Metamath Proof Explorer


Theorem wallispilem5

Description: The sequence H converges to 1. (Contributed by Glauco Siliprandi, 30-Jun-2017)

Ref Expression
Hypotheses wallispilem5.1 F=k2k2k12k2k+1
wallispilem5.2 I=n00πsinxndx
wallispilem5.3 G=nI2nI2n+1
wallispilem5.4 H=nπ21seq1×Fn
wallispilem5.5 L=n2n+12n
Assertion wallispilem5 H1

Proof

Step Hyp Ref Expression
1 wallispilem5.1 F=k2k2k12k2k+1
2 wallispilem5.2 I=n00πsinxndx
3 wallispilem5.3 G=nI2nI2n+1
4 wallispilem5.4 H=nπ21seq1×Fn
5 wallispilem5.5 L=n2n+12n
6 1 2 3 4 wallispilem4 G=H
7 nnuz =1
8 1zzd 1
9 2cnd 2
10 2ne0 20
11 10 a1i 20
12 1cnd 1
13 5 9 11 12 clim1fr1 L1
14 nnex V
15 14 mptex nI2nI2n+1V
16 3 15 eqeltri GV
17 16 a1i GV
18 2nn0 20
19 18 a1i n20
20 nnnn0 nn0
21 19 20 nn0mulcld n2n0
22 1nn0 10
23 22 a1i n10
24 21 23 nn0addcld n2n+10
25 24 nn0red n2n+1
26 21 nn0red n2n
27 2cnd n2
28 nncn nn
29 10 a1i n20
30 nnne0 nn0
31 27 28 29 30 mulne0d n2n0
32 25 26 31 redivcld n2n+12n
33 5 32 fmpti L:
34 33 a1i L:
35 34 ffvelcdmda kLk
36 2 wallispilem3 2n0I2n+
37 21 36 syl nI2n+
38 37 rpred nI2n
39 2 wallispilem3 2n+10I2n+1+
40 24 39 syl nI2n+1+
41 38 40 rerpdivcld nI2nI2n+1
42 3 41 fmpti G:
43 42 a1i G:
44 43 ffvelcdmda kGk
45 18 a1i k20
46 nnnn0 kk0
47 45 46 nn0mulcld k2k0
48 2 wallispilem3 2k0I2k+
49 47 48 syl kI2k+
50 49 rpred kI2k
51 2nn 2
52 51 a1i k2
53 id kk
54 52 53 nnmulcld k2k
55 nnm1nn0 2k2k10
56 54 55 syl k2k10
57 2 wallispilem3 2k10I2k1+
58 56 57 syl kI2k1+
59 58 rpred kI2k1
60 22 a1i k10
61 47 60 nn0addcld k2k+10
62 2 wallispilem3 2k+10I2k+1+
63 61 62 syl kI2k+1+
64 2cnd k2
65 nncn kk
66 64 65 mulcld k2k
67 1cnd k1
68 66 67 npcand k2k-1+1=2k
69 68 fveq2d kI2k-1+1=I2k
70 2 56 wallispilem1 kI2k-1+1I2k1
71 69 70 eqbrtrrd kI2kI2k1
72 50 59 63 71 lediv1dd kI2kI2k+1I2k1I2k+1
73 66 67 addcld k2k+1
74 10 a1i k20
75 nnne0 kk0
76 64 65 74 75 mulne0d k2k0
77 73 66 76 divcld k2k+12k
78 63 rpcnd kI2k+1
79 63 rpne0d kI2k+10
80 77 78 79 divcan4d k2k+12kI2k+1I2k+1=2k+12k
81 2re 2
82 81 a1i k2
83 nnre kk
84 82 83 remulcld k2k
85 1red k1
86 84 85 readdcld k2k+1
87 45 nn0ge0d k02
88 nnge1 k1k
89 82 83 87 88 lemulge11d k22k
90 84 ltp1d k2k<2k+1
91 82 84 86 89 90 lelttrd k2<2k+1
92 82 86 91 ltled k22k+1
93 45 nn0zd k2
94 61 nn0zd k2k+1
95 eluz 22k+12k+1222k+1
96 93 94 95 syl2anc k2k+1222k+1
97 92 96 mpbird k2k+12
98 2 97 itgsinexp kI2k+1=2k+1-12k+1I2k+1-2
99 66 67 pncand k2k+1-1=2k
100 99 oveq1d k2k+1-12k+1=2k2k+1
101 1e2m1 1=21
102 101 a1i k1=21
103 102 oveq2d k2k1=2k21
104 66 64 67 subsub3d k2k21=2k+1-2
105 103 104 eqtr2d k2k+1-2=2k1
106 105 fveq2d kI2k+1-2=I2k1
107 100 106 oveq12d k2k+1-12k+1I2k+1-2=2k2k+1I2k1
108 98 107 eqtrd kI2k+1=2k2k+1I2k1
109 108 oveq2d k2k+12kI2k+1=2k+12k2k2k+1I2k1
110 54 peano2nnd k2k+1
111 110 nnne0d k2k+10
112 66 73 111 divcld k2k2k+1
113 58 rpcnd kI2k1
114 77 112 113 mulassd k2k+12k2k2k+1I2k1=2k+12k2k2k+1I2k1
115 73 66 111 76 divcan6d k2k+12k2k2k+1=1
116 115 oveq1d k2k+12k2k2k+1I2k1=1I2k1
117 113 mullidd k1I2k1=I2k1
118 116 117 eqtrd k2k+12k2k2k+1I2k1=I2k1
119 109 114 118 3eqtr2d k2k+12kI2k+1=I2k1
120 119 oveq1d k2k+12kI2k+1I2k+1=I2k1I2k+1
121 80 120 eqtr3d k2k+12k=I2k1I2k+1
122 72 121 breqtrrd kI2kI2k+12k+12k
123 49 63 rpdivcld kI2kI2k+1+
124 nfcv _nk
125 nfmpt1 _nn00πsinxndx
126 2 125 nfcxfr _nI
127 nfcv _n2k
128 126 127 nffv _nI2k
129 nfcv _n÷
130 nfcv _n2k+1
131 126 130 nffv _nI2k+1
132 128 129 131 nfov _nI2kI2k+1
133 oveq2 n=k2n=2k
134 133 fveq2d n=kI2n=I2k
135 133 fvoveq1d n=kI2n+1=I2k+1
136 134 135 oveq12d n=kI2nI2n+1=I2kI2k+1
137 124 132 136 3 fvmptf kI2kI2k+1+Gk=I2kI2k+1
138 123 137 mpdan kGk=I2kI2k+1
139 5 a1i kL=n2n+12n
140 simpr kn=kn=k
141 140 oveq2d kn=k2n=2k
142 141 oveq1d kn=k2n+1=2k+1
143 142 141 oveq12d kn=k2n+12n=2k+12k
144 139 143 53 77 fvmptd kLk=2k+12k
145 122 138 144 3brtr4d kGkLk
146 145 adantl kGkLk
147 78 79 dividd kI2k+1I2k+1=1
148 63 rpred kI2k+1
149 2 47 wallispilem1 kI2k+1I2k
150 148 50 63 149 lediv1dd kI2k+1I2k+1I2kI2k+1
151 147 150 eqbrtrrd k1I2kI2k+1
152 151 138 breqtrrd k1Gk
153 152 adantl k1Gk
154 7 8 13 17 35 44 146 153 climsqz2 G1
155 154 mptru G1
156 6 155 eqbrtrri H1