| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clim1fr1.1 |  | 
						
							| 2 |  | clim1fr1.2 |  | 
						
							| 3 |  | clim1fr1.3 |  | 
						
							| 4 |  | clim1fr1.4 |  | 
						
							| 5 |  | nnuz |  | 
						
							| 6 |  | 1zzd |  | 
						
							| 7 |  | nnex |  | 
						
							| 8 | 7 | mptex |  | 
						
							| 9 | 8 | a1i |  | 
						
							| 10 |  | 1cnd |  | 
						
							| 11 |  | eqidd |  | 
						
							| 12 |  | eqidd |  | 
						
							| 13 |  | id |  | 
						
							| 14 |  | 1cnd |  | 
						
							| 15 | 11 12 13 14 | fvmptd |  | 
						
							| 16 | 15 | adantl |  | 
						
							| 17 | 5 6 9 10 16 | climconst |  | 
						
							| 18 | 7 | mptex |  | 
						
							| 19 | 1 18 | eqeltri |  | 
						
							| 20 | 19 | a1i |  | 
						
							| 21 | 4 | adantr |  | 
						
							| 22 | 2 | adantr |  | 
						
							| 23 |  | nncn |  | 
						
							| 24 | 23 | adantl |  | 
						
							| 25 | 3 | adantr |  | 
						
							| 26 |  | nnne0 |  | 
						
							| 27 | 26 | adantl |  | 
						
							| 28 | 21 22 24 25 27 | divdiv1d |  | 
						
							| 29 | 28 | mpteq2dva |  | 
						
							| 30 | 4 2 3 | divcld |  | 
						
							| 31 |  | divcnv |  | 
						
							| 32 | 30 31 | syl |  | 
						
							| 33 | 29 32 | eqbrtrrd |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 |  | 1cnd |  | 
						
							| 36 | 34 35 | fmpti |  | 
						
							| 37 | 36 | a1i |  | 
						
							| 38 | 37 | ffvelcdmda |  | 
						
							| 39 | 22 24 | mulcld |  | 
						
							| 40 | 22 24 25 27 | mulne0d |  | 
						
							| 41 | 21 39 40 | divcld |  | 
						
							| 42 | 41 | fmpttd |  | 
						
							| 43 | 42 | ffvelcdmda |  | 
						
							| 44 |  | oveq2 |  | 
						
							| 45 | 44 | oveq1d |  | 
						
							| 46 | 45 44 | oveq12d |  | 
						
							| 47 |  | simpr |  | 
						
							| 48 | 2 | adantr |  | 
						
							| 49 | 47 | nncnd |  | 
						
							| 50 | 48 49 | mulcld |  | 
						
							| 51 | 4 | adantr |  | 
						
							| 52 | 50 51 | addcld |  | 
						
							| 53 | 3 | adantr |  | 
						
							| 54 | 47 | nnne0d |  | 
						
							| 55 | 48 49 53 54 | mulne0d |  | 
						
							| 56 | 52 50 55 | divcld |  | 
						
							| 57 | 1 46 47 56 | fvmptd3 |  | 
						
							| 58 | 50 51 50 55 | divdird |  | 
						
							| 59 | 50 55 | dividd |  | 
						
							| 60 | 59 | oveq1d |  | 
						
							| 61 | 58 60 | eqtrd |  | 
						
							| 62 | 16 | eqcomd |  | 
						
							| 63 |  | eqidd |  | 
						
							| 64 |  | simpr |  | 
						
							| 65 | 64 | oveq2d |  | 
						
							| 66 | 65 | oveq2d |  | 
						
							| 67 | 51 50 55 | divcld |  | 
						
							| 68 | 63 66 47 67 | fvmptd |  | 
						
							| 69 | 68 | eqcomd |  | 
						
							| 70 | 62 69 | oveq12d |  | 
						
							| 71 | 57 61 70 | 3eqtrd |  | 
						
							| 72 | 5 6 17 20 33 38 43 71 | climadd |  | 
						
							| 73 |  | 1p0e1 |  | 
						
							| 74 | 72 73 | breqtrdi |  |