| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clim1fr1.1 | ⊢ 𝐹  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝐴  ·  𝑛 )  +  𝐵 )  /  ( 𝐴  ·  𝑛 ) ) ) | 
						
							| 2 |  | clim1fr1.2 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 3 |  | clim1fr1.3 | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
						
							| 4 |  | clim1fr1.4 | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 5 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 6 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 7 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 8 | 7 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  1 )  ∈  V | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  1 )  ∈  V ) | 
						
							| 10 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 11 |  | eqidd | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑛  ∈  ℕ  ↦  1 )  =  ( 𝑛  ∈  ℕ  ↦  1 ) ) | 
						
							| 12 |  | eqidd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑛  =  𝑘 )  →  1  =  1 ) | 
						
							| 13 |  | id | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℕ ) | 
						
							| 14 |  | 1cnd | ⊢ ( 𝑘  ∈  ℕ  →  1  ∈  ℂ ) | 
						
							| 15 | 11 12 13 14 | fvmptd | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  1 ) ‘ 𝑘 )  =  1 ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  1 ) ‘ 𝑘 )  =  1 ) | 
						
							| 17 | 5 6 9 10 16 | climconst | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  1 )  ⇝  1 ) | 
						
							| 18 | 7 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝐴  ·  𝑛 )  +  𝐵 )  /  ( 𝐴  ·  𝑛 ) ) )  ∈  V | 
						
							| 19 | 1 18 | eqeltri | ⊢ 𝐹  ∈  V | 
						
							| 20 | 19 | a1i | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 21 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐵  ∈  ℂ ) | 
						
							| 22 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐴  ∈  ℂ ) | 
						
							| 23 |  | nncn | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℂ ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℂ ) | 
						
							| 25 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐴  ≠  0 ) | 
						
							| 26 |  | nnne0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ≠  0 ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ≠  0 ) | 
						
							| 28 | 21 22 24 25 27 | divdiv1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐵  /  𝐴 )  /  𝑛 )  =  ( 𝐵  /  ( 𝐴  ·  𝑛 ) ) ) | 
						
							| 29 | 28 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐵  /  𝐴 )  /  𝑛 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( 𝐵  /  ( 𝐴  ·  𝑛 ) ) ) ) | 
						
							| 30 | 4 2 3 | divcld | ⊢ ( 𝜑  →  ( 𝐵  /  𝐴 )  ∈  ℂ ) | 
						
							| 31 |  | divcnv | ⊢ ( ( 𝐵  /  𝐴 )  ∈  ℂ  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐵  /  𝐴 )  /  𝑛 ) )  ⇝  0 ) | 
						
							| 32 | 30 31 | syl | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐵  /  𝐴 )  /  𝑛 ) )  ⇝  0 ) | 
						
							| 33 | 29 32 | eqbrtrrd | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( 𝐵  /  ( 𝐴  ·  𝑛 ) ) )  ⇝  0 ) | 
						
							| 34 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  1 )  =  ( 𝑛  ∈  ℕ  ↦  1 ) | 
						
							| 35 |  | 1cnd | ⊢ ( 𝑛  ∈  ℕ  →  1  ∈  ℂ ) | 
						
							| 36 | 34 35 | fmpti | ⊢ ( 𝑛  ∈  ℕ  ↦  1 ) : ℕ ⟶ ℂ | 
						
							| 37 | 36 | a1i | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  1 ) : ℕ ⟶ ℂ ) | 
						
							| 38 | 37 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  1 ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 39 | 22 24 | mulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴  ·  𝑛 )  ∈  ℂ ) | 
						
							| 40 | 22 24 25 27 | mulne0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴  ·  𝑛 )  ≠  0 ) | 
						
							| 41 | 21 39 40 | divcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐵  /  ( 𝐴  ·  𝑛 ) )  ∈  ℂ ) | 
						
							| 42 | 41 | fmpttd | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( 𝐵  /  ( 𝐴  ·  𝑛 ) ) ) : ℕ ⟶ ℂ ) | 
						
							| 43 | 42 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝐵  /  ( 𝐴  ·  𝑛 ) ) ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 44 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝐴  ·  𝑛 )  =  ( 𝐴  ·  𝑘 ) ) | 
						
							| 45 | 44 | oveq1d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝐴  ·  𝑛 )  +  𝐵 )  =  ( ( 𝐴  ·  𝑘 )  +  𝐵 ) ) | 
						
							| 46 | 45 44 | oveq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( ( 𝐴  ·  𝑛 )  +  𝐵 )  /  ( 𝐴  ·  𝑛 ) )  =  ( ( ( 𝐴  ·  𝑘 )  +  𝐵 )  /  ( 𝐴  ·  𝑘 ) ) ) | 
						
							| 47 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℕ ) | 
						
							| 48 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝐴  ∈  ℂ ) | 
						
							| 49 | 47 | nncnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℂ ) | 
						
							| 50 | 48 49 | mulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐴  ·  𝑘 )  ∈  ℂ ) | 
						
							| 51 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝐵  ∈  ℂ ) | 
						
							| 52 | 50 51 | addcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐴  ·  𝑘 )  +  𝐵 )  ∈  ℂ ) | 
						
							| 53 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝐴  ≠  0 ) | 
						
							| 54 | 47 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝑘  ≠  0 ) | 
						
							| 55 | 48 49 53 54 | mulne0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐴  ·  𝑘 )  ≠  0 ) | 
						
							| 56 | 52 50 55 | divcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐴  ·  𝑘 )  +  𝐵 )  /  ( 𝐴  ·  𝑘 ) )  ∈  ℂ ) | 
						
							| 57 | 1 46 47 56 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  =  ( ( ( 𝐴  ·  𝑘 )  +  𝐵 )  /  ( 𝐴  ·  𝑘 ) ) ) | 
						
							| 58 | 50 51 50 55 | divdird | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐴  ·  𝑘 )  +  𝐵 )  /  ( 𝐴  ·  𝑘 ) )  =  ( ( ( 𝐴  ·  𝑘 )  /  ( 𝐴  ·  𝑘 ) )  +  ( 𝐵  /  ( 𝐴  ·  𝑘 ) ) ) ) | 
						
							| 59 | 50 55 | dividd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐴  ·  𝑘 )  /  ( 𝐴  ·  𝑘 ) )  =  1 ) | 
						
							| 60 | 59 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐴  ·  𝑘 )  /  ( 𝐴  ·  𝑘 ) )  +  ( 𝐵  /  ( 𝐴  ·  𝑘 ) ) )  =  ( 1  +  ( 𝐵  /  ( 𝐴  ·  𝑘 ) ) ) ) | 
						
							| 61 | 58 60 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐴  ·  𝑘 )  +  𝐵 )  /  ( 𝐴  ·  𝑘 ) )  =  ( 1  +  ( 𝐵  /  ( 𝐴  ·  𝑘 ) ) ) ) | 
						
							| 62 | 16 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  1  =  ( ( 𝑛  ∈  ℕ  ↦  1 ) ‘ 𝑘 ) ) | 
						
							| 63 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑛  ∈  ℕ  ↦  ( 𝐵  /  ( 𝐴  ·  𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( 𝐵  /  ( 𝐴  ·  𝑛 ) ) ) ) | 
						
							| 64 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑛  =  𝑘 )  →  𝑛  =  𝑘 ) | 
						
							| 65 | 64 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑛  =  𝑘 )  →  ( 𝐴  ·  𝑛 )  =  ( 𝐴  ·  𝑘 ) ) | 
						
							| 66 | 65 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑛  =  𝑘 )  →  ( 𝐵  /  ( 𝐴  ·  𝑛 ) )  =  ( 𝐵  /  ( 𝐴  ·  𝑘 ) ) ) | 
						
							| 67 | 51 50 55 | divcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐵  /  ( 𝐴  ·  𝑘 ) )  ∈  ℂ ) | 
						
							| 68 | 63 66 47 67 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝐵  /  ( 𝐴  ·  𝑛 ) ) ) ‘ 𝑘 )  =  ( 𝐵  /  ( 𝐴  ·  𝑘 ) ) ) | 
						
							| 69 | 68 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐵  /  ( 𝐴  ·  𝑘 ) )  =  ( ( 𝑛  ∈  ℕ  ↦  ( 𝐵  /  ( 𝐴  ·  𝑛 ) ) ) ‘ 𝑘 ) ) | 
						
							| 70 | 62 69 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 1  +  ( 𝐵  /  ( 𝐴  ·  𝑘 ) ) )  =  ( ( ( 𝑛  ∈  ℕ  ↦  1 ) ‘ 𝑘 )  +  ( ( 𝑛  ∈  ℕ  ↦  ( 𝐵  /  ( 𝐴  ·  𝑛 ) ) ) ‘ 𝑘 ) ) ) | 
						
							| 71 | 57 61 70 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  =  ( ( ( 𝑛  ∈  ℕ  ↦  1 ) ‘ 𝑘 )  +  ( ( 𝑛  ∈  ℕ  ↦  ( 𝐵  /  ( 𝐴  ·  𝑛 ) ) ) ‘ 𝑘 ) ) ) | 
						
							| 72 | 5 6 17 20 33 38 43 71 | climadd | ⊢ ( 𝜑  →  𝐹  ⇝  ( 1  +  0 ) ) | 
						
							| 73 |  | 1p0e1 | ⊢ ( 1  +  0 )  =  1 | 
						
							| 74 | 72 73 | breqtrdi | ⊢ ( 𝜑  →  𝐹  ⇝  1 ) |