| Step |
Hyp |
Ref |
Expression |
| 1 |
|
winacard |
|- ( A e. InaccW -> ( card ` A ) = A ) |
| 2 |
|
winainf |
|- ( A e. InaccW -> _om C_ A ) |
| 3 |
|
cardalephex |
|- ( _om C_ A -> ( ( card ` A ) = A <-> E. x e. On A = ( aleph ` x ) ) ) |
| 4 |
2 3
|
syl |
|- ( A e. InaccW -> ( ( card ` A ) = A <-> E. x e. On A = ( aleph ` x ) ) ) |
| 5 |
1 4
|
mpbid |
|- ( A e. InaccW -> E. x e. On A = ( aleph ` x ) ) |
| 6 |
5
|
adantr |
|- ( ( A e. InaccW /\ A =/= _om ) -> E. x e. On A = ( aleph ` x ) ) |
| 7 |
|
df-rex |
|- ( E. x e. On A = ( aleph ` x ) <-> E. x ( x e. On /\ A = ( aleph ` x ) ) ) |
| 8 |
|
simprr |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> A = ( aleph ` x ) ) |
| 9 |
8
|
eqcomd |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> ( aleph ` x ) = A ) |
| 10 |
|
simprl |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> x e. On ) |
| 11 |
|
onzsl |
|- ( x e. On <-> ( x = (/) \/ E. y e. On x = suc y \/ ( x e. _V /\ Lim x ) ) ) |
| 12 |
10 11
|
sylib |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> ( x = (/) \/ E. y e. On x = suc y \/ ( x e. _V /\ Lim x ) ) ) |
| 13 |
|
simplr |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> A =/= _om ) |
| 14 |
|
fveq2 |
|- ( x = (/) -> ( aleph ` x ) = ( aleph ` (/) ) ) |
| 15 |
|
aleph0 |
|- ( aleph ` (/) ) = _om |
| 16 |
14 15
|
eqtrdi |
|- ( x = (/) -> ( aleph ` x ) = _om ) |
| 17 |
|
eqtr |
|- ( ( A = ( aleph ` x ) /\ ( aleph ` x ) = _om ) -> A = _om ) |
| 18 |
16 17
|
sylan2 |
|- ( ( A = ( aleph ` x ) /\ x = (/) ) -> A = _om ) |
| 19 |
18
|
ex |
|- ( A = ( aleph ` x ) -> ( x = (/) -> A = _om ) ) |
| 20 |
19
|
necon3ad |
|- ( A = ( aleph ` x ) -> ( A =/= _om -> -. x = (/) ) ) |
| 21 |
8 13 20
|
sylc |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> -. x = (/) ) |
| 22 |
21
|
pm2.21d |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> ( x = (/) -> Lim x ) ) |
| 23 |
|
breq1 |
|- ( z = ( aleph ` y ) -> ( z ~< w <-> ( aleph ` y ) ~< w ) ) |
| 24 |
23
|
rexbidv |
|- ( z = ( aleph ` y ) -> ( E. w e. A z ~< w <-> E. w e. A ( aleph ` y ) ~< w ) ) |
| 25 |
|
elwina |
|- ( A e. InaccW <-> ( A =/= (/) /\ ( cf ` A ) = A /\ A. z e. A E. w e. A z ~< w ) ) |
| 26 |
25
|
simp3bi |
|- ( A e. InaccW -> A. z e. A E. w e. A z ~< w ) |
| 27 |
26
|
ad3antrrr |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> A. z e. A E. w e. A z ~< w ) |
| 28 |
|
onsuc |
|- ( y e. On -> suc y e. On ) |
| 29 |
|
vex |
|- y e. _V |
| 30 |
29
|
sucid |
|- y e. suc y |
| 31 |
|
alephord2i |
|- ( suc y e. On -> ( y e. suc y -> ( aleph ` y ) e. ( aleph ` suc y ) ) ) |
| 32 |
28 30 31
|
mpisyl |
|- ( y e. On -> ( aleph ` y ) e. ( aleph ` suc y ) ) |
| 33 |
32
|
ad2antrl |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> ( aleph ` y ) e. ( aleph ` suc y ) ) |
| 34 |
|
simplrr |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> A = ( aleph ` x ) ) |
| 35 |
|
fveq2 |
|- ( x = suc y -> ( aleph ` x ) = ( aleph ` suc y ) ) |
| 36 |
35
|
ad2antll |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> ( aleph ` x ) = ( aleph ` suc y ) ) |
| 37 |
34 36
|
eqtrd |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> A = ( aleph ` suc y ) ) |
| 38 |
33 37
|
eleqtrrd |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> ( aleph ` y ) e. A ) |
| 39 |
24 27 38
|
rspcdva |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> E. w e. A ( aleph ` y ) ~< w ) |
| 40 |
39
|
expr |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ y e. On ) -> ( x = suc y -> E. w e. A ( aleph ` y ) ~< w ) ) |
| 41 |
|
iscard |
|- ( ( card ` A ) = A <-> ( A e. On /\ A. w e. A w ~< A ) ) |
| 42 |
41
|
simprbi |
|- ( ( card ` A ) = A -> A. w e. A w ~< A ) |
| 43 |
|
rsp |
|- ( A. w e. A w ~< A -> ( w e. A -> w ~< A ) ) |
| 44 |
1 42 43
|
3syl |
|- ( A e. InaccW -> ( w e. A -> w ~< A ) ) |
| 45 |
44
|
ad3antrrr |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> ( w e. A -> w ~< A ) ) |
| 46 |
37
|
breq2d |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> ( w ~< A <-> w ~< ( aleph ` suc y ) ) ) |
| 47 |
45 46
|
sylibd |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> ( w e. A -> w ~< ( aleph ` suc y ) ) ) |
| 48 |
|
alephnbtwn2 |
|- -. ( ( aleph ` y ) ~< w /\ w ~< ( aleph ` suc y ) ) |
| 49 |
|
pm3.21 |
|- ( w ~< ( aleph ` suc y ) -> ( ( aleph ` y ) ~< w -> ( ( aleph ` y ) ~< w /\ w ~< ( aleph ` suc y ) ) ) ) |
| 50 |
48 49
|
mtoi |
|- ( w ~< ( aleph ` suc y ) -> -. ( aleph ` y ) ~< w ) |
| 51 |
47 50
|
syl6 |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> ( w e. A -> -. ( aleph ` y ) ~< w ) ) |
| 52 |
51
|
imp |
|- ( ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) /\ w e. A ) -> -. ( aleph ` y ) ~< w ) |
| 53 |
52
|
nrexdv |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> -. E. w e. A ( aleph ` y ) ~< w ) |
| 54 |
53
|
expr |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ y e. On ) -> ( x = suc y -> -. E. w e. A ( aleph ` y ) ~< w ) ) |
| 55 |
40 54
|
pm2.65d |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ y e. On ) -> -. x = suc y ) |
| 56 |
55
|
nrexdv |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> -. E. y e. On x = suc y ) |
| 57 |
56
|
pm2.21d |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> ( E. y e. On x = suc y -> Lim x ) ) |
| 58 |
|
simpr |
|- ( ( x e. _V /\ Lim x ) -> Lim x ) |
| 59 |
58
|
a1i |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> ( ( x e. _V /\ Lim x ) -> Lim x ) ) |
| 60 |
22 57 59
|
3jaod |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> ( ( x = (/) \/ E. y e. On x = suc y \/ ( x e. _V /\ Lim x ) ) -> Lim x ) ) |
| 61 |
12 60
|
mpd |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> Lim x ) |
| 62 |
9 61
|
jca |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> ( ( aleph ` x ) = A /\ Lim x ) ) |
| 63 |
62
|
ex |
|- ( ( A e. InaccW /\ A =/= _om ) -> ( ( x e. On /\ A = ( aleph ` x ) ) -> ( ( aleph ` x ) = A /\ Lim x ) ) ) |
| 64 |
63
|
eximdv |
|- ( ( A e. InaccW /\ A =/= _om ) -> ( E. x ( x e. On /\ A = ( aleph ` x ) ) -> E. x ( ( aleph ` x ) = A /\ Lim x ) ) ) |
| 65 |
7 64
|
biimtrid |
|- ( ( A e. InaccW /\ A =/= _om ) -> ( E. x e. On A = ( aleph ` x ) -> E. x ( ( aleph ` x ) = A /\ Lim x ) ) ) |
| 66 |
6 65
|
mpd |
|- ( ( A e. InaccW /\ A =/= _om ) -> E. x ( ( aleph ` x ) = A /\ Lim x ) ) |