| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wspn0.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | wspthsn |  |-  ( N WSPathsN G ) = { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w } | 
						
							| 3 |  | wwlknbp1 |  |-  ( w e. ( N WWalksN G ) -> ( N e. NN0 /\ w e. Word ( Vtx ` G ) /\ ( # ` w ) = ( N + 1 ) ) ) | 
						
							| 4 | 1 | eqeq1i |  |-  ( V = (/) <-> ( Vtx ` G ) = (/) ) | 
						
							| 5 |  | wrdeq |  |-  ( ( Vtx ` G ) = (/) -> Word ( Vtx ` G ) = Word (/) ) | 
						
							| 6 | 4 5 | sylbi |  |-  ( V = (/) -> Word ( Vtx ` G ) = Word (/) ) | 
						
							| 7 | 6 | eleq2d |  |-  ( V = (/) -> ( w e. Word ( Vtx ` G ) <-> w e. Word (/) ) ) | 
						
							| 8 |  | 0wrd0 |  |-  ( w e. Word (/) <-> w = (/) ) | 
						
							| 9 | 7 8 | bitrdi |  |-  ( V = (/) -> ( w e. Word ( Vtx ` G ) <-> w = (/) ) ) | 
						
							| 10 |  | fveq2 |  |-  ( w = (/) -> ( # ` w ) = ( # ` (/) ) ) | 
						
							| 11 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 12 | 10 11 | eqtrdi |  |-  ( w = (/) -> ( # ` w ) = 0 ) | 
						
							| 13 | 12 | eqeq1d |  |-  ( w = (/) -> ( ( # ` w ) = ( N + 1 ) <-> 0 = ( N + 1 ) ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( N e. NN0 /\ w = (/) ) -> ( ( # ` w ) = ( N + 1 ) <-> 0 = ( N + 1 ) ) ) | 
						
							| 15 |  | nn0p1gt0 |  |-  ( N e. NN0 -> 0 < ( N + 1 ) ) | 
						
							| 16 | 15 | gt0ne0d |  |-  ( N e. NN0 -> ( N + 1 ) =/= 0 ) | 
						
							| 17 |  | eqneqall |  |-  ( ( N + 1 ) = 0 -> ( ( N + 1 ) =/= 0 -> -. E. f f ( SPaths ` G ) w ) ) | 
						
							| 18 | 17 | eqcoms |  |-  ( 0 = ( N + 1 ) -> ( ( N + 1 ) =/= 0 -> -. E. f f ( SPaths ` G ) w ) ) | 
						
							| 19 | 16 18 | syl5com |  |-  ( N e. NN0 -> ( 0 = ( N + 1 ) -> -. E. f f ( SPaths ` G ) w ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( N e. NN0 /\ w = (/) ) -> ( 0 = ( N + 1 ) -> -. E. f f ( SPaths ` G ) w ) ) | 
						
							| 21 | 14 20 | sylbid |  |-  ( ( N e. NN0 /\ w = (/) ) -> ( ( # ` w ) = ( N + 1 ) -> -. E. f f ( SPaths ` G ) w ) ) | 
						
							| 22 | 21 | expcom |  |-  ( w = (/) -> ( N e. NN0 -> ( ( # ` w ) = ( N + 1 ) -> -. E. f f ( SPaths ` G ) w ) ) ) | 
						
							| 23 | 22 | com23 |  |-  ( w = (/) -> ( ( # ` w ) = ( N + 1 ) -> ( N e. NN0 -> -. E. f f ( SPaths ` G ) w ) ) ) | 
						
							| 24 | 9 23 | biimtrdi |  |-  ( V = (/) -> ( w e. Word ( Vtx ` G ) -> ( ( # ` w ) = ( N + 1 ) -> ( N e. NN0 -> -. E. f f ( SPaths ` G ) w ) ) ) ) | 
						
							| 25 | 24 | com14 |  |-  ( N e. NN0 -> ( w e. Word ( Vtx ` G ) -> ( ( # ` w ) = ( N + 1 ) -> ( V = (/) -> -. E. f f ( SPaths ` G ) w ) ) ) ) | 
						
							| 26 | 25 | 3imp |  |-  ( ( N e. NN0 /\ w e. Word ( Vtx ` G ) /\ ( # ` w ) = ( N + 1 ) ) -> ( V = (/) -> -. E. f f ( SPaths ` G ) w ) ) | 
						
							| 27 | 3 26 | syl |  |-  ( w e. ( N WWalksN G ) -> ( V = (/) -> -. E. f f ( SPaths ` G ) w ) ) | 
						
							| 28 | 27 | impcom |  |-  ( ( V = (/) /\ w e. ( N WWalksN G ) ) -> -. E. f f ( SPaths ` G ) w ) | 
						
							| 29 | 28 | ralrimiva |  |-  ( V = (/) -> A. w e. ( N WWalksN G ) -. E. f f ( SPaths ` G ) w ) | 
						
							| 30 |  | rabeq0 |  |-  ( { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w } = (/) <-> A. w e. ( N WWalksN G ) -. E. f f ( SPaths ` G ) w ) | 
						
							| 31 | 29 30 | sylibr |  |-  ( V = (/) -> { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w } = (/) ) | 
						
							| 32 | 2 31 | eqtrid |  |-  ( V = (/) -> ( N WSPathsN G ) = (/) ) |