| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wspn0.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | wspthsn | ⊢ ( 𝑁  WSPathsN  𝐺 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } | 
						
							| 3 |  | wwlknbp1 | ⊢ ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑁  ∈  ℕ0  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 4 | 1 | eqeq1i | ⊢ ( 𝑉  =  ∅  ↔  ( Vtx ‘ 𝐺 )  =  ∅ ) | 
						
							| 5 |  | wrdeq | ⊢ ( ( Vtx ‘ 𝐺 )  =  ∅  →  Word  ( Vtx ‘ 𝐺 )  =  Word  ∅ ) | 
						
							| 6 | 4 5 | sylbi | ⊢ ( 𝑉  =  ∅  →  Word  ( Vtx ‘ 𝐺 )  =  Word  ∅ ) | 
						
							| 7 | 6 | eleq2d | ⊢ ( 𝑉  =  ∅  →  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ↔  𝑤  ∈  Word  ∅ ) ) | 
						
							| 8 |  | 0wrd0 | ⊢ ( 𝑤  ∈  Word  ∅  ↔  𝑤  =  ∅ ) | 
						
							| 9 | 7 8 | bitrdi | ⊢ ( 𝑉  =  ∅  →  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ↔  𝑤  =  ∅ ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑤  =  ∅  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 11 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 12 | 10 11 | eqtrdi | ⊢ ( 𝑤  =  ∅  →  ( ♯ ‘ 𝑤 )  =  0 ) | 
						
							| 13 | 12 | eqeq1d | ⊢ ( 𝑤  =  ∅  →  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  ↔  0  =  ( 𝑁  +  1 ) ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑤  =  ∅ )  →  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  ↔  0  =  ( 𝑁  +  1 ) ) ) | 
						
							| 15 |  | nn0p1gt0 | ⊢ ( 𝑁  ∈  ℕ0  →  0  <  ( 𝑁  +  1 ) ) | 
						
							| 16 | 15 | gt0ne0d | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ≠  0 ) | 
						
							| 17 |  | eqneqall | ⊢ ( ( 𝑁  +  1 )  =  0  →  ( ( 𝑁  +  1 )  ≠  0  →  ¬  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) | 
						
							| 18 | 17 | eqcoms | ⊢ ( 0  =  ( 𝑁  +  1 )  →  ( ( 𝑁  +  1 )  ≠  0  →  ¬  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) | 
						
							| 19 | 16 18 | syl5com | ⊢ ( 𝑁  ∈  ℕ0  →  ( 0  =  ( 𝑁  +  1 )  →  ¬  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑤  =  ∅ )  →  ( 0  =  ( 𝑁  +  1 )  →  ¬  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) | 
						
							| 21 | 14 20 | sylbid | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑤  =  ∅ )  →  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  →  ¬  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) | 
						
							| 22 | 21 | expcom | ⊢ ( 𝑤  =  ∅  →  ( 𝑁  ∈  ℕ0  →  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  →  ¬  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) ) | 
						
							| 23 | 22 | com23 | ⊢ ( 𝑤  =  ∅  →  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  →  ( 𝑁  ∈  ℕ0  →  ¬  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) ) | 
						
							| 24 | 9 23 | biimtrdi | ⊢ ( 𝑉  =  ∅  →  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  →  ( 𝑁  ∈  ℕ0  →  ¬  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) ) ) | 
						
							| 25 | 24 | com14 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  →  ( 𝑉  =  ∅  →  ¬  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) ) ) | 
						
							| 26 | 25 | 3imp | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) )  →  ( 𝑉  =  ∅  →  ¬  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) | 
						
							| 27 | 3 26 | syl | ⊢ ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑉  =  ∅  →  ¬  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) | 
						
							| 28 | 27 | impcom | ⊢ ( ( 𝑉  =  ∅  ∧  𝑤  ∈  ( 𝑁  WWalksN  𝐺 ) )  →  ¬  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) | 
						
							| 29 | 28 | ralrimiva | ⊢ ( 𝑉  =  ∅  →  ∀ 𝑤  ∈  ( 𝑁  WWalksN  𝐺 ) ¬  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) | 
						
							| 30 |  | rabeq0 | ⊢ ( { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 }  =  ∅  ↔  ∀ 𝑤  ∈  ( 𝑁  WWalksN  𝐺 ) ¬  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) | 
						
							| 31 | 29 30 | sylibr | ⊢ ( 𝑉  =  ∅  →  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 }  =  ∅ ) | 
						
							| 32 | 2 31 | eqtrid | ⊢ ( 𝑉  =  ∅  →  ( 𝑁  WSPathsN  𝐺 )  =  ∅ ) |