| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wspn0.v |  | 
						
							| 2 |  | wspthsn |  | 
						
							| 3 |  | wwlknbp1 |  | 
						
							| 4 | 1 | eqeq1i |  | 
						
							| 5 |  | wrdeq |  | 
						
							| 6 | 4 5 | sylbi |  | 
						
							| 7 | 6 | eleq2d |  | 
						
							| 8 |  | 0wrd0 |  | 
						
							| 9 | 7 8 | bitrdi |  | 
						
							| 10 |  | fveq2 |  | 
						
							| 11 |  | hash0 |  | 
						
							| 12 | 10 11 | eqtrdi |  | 
						
							| 13 | 12 | eqeq1d |  | 
						
							| 14 | 13 | adantl |  | 
						
							| 15 |  | nn0p1gt0 |  | 
						
							| 16 | 15 | gt0ne0d |  | 
						
							| 17 |  | eqneqall |  | 
						
							| 18 | 17 | eqcoms |  | 
						
							| 19 | 16 18 | syl5com |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 | 14 20 | sylbid |  | 
						
							| 22 | 21 | expcom |  | 
						
							| 23 | 22 | com23 |  | 
						
							| 24 | 9 23 | biimtrdi |  | 
						
							| 25 | 24 | com14 |  | 
						
							| 26 | 25 | 3imp |  | 
						
							| 27 | 3 26 | syl |  | 
						
							| 28 | 27 | impcom |  | 
						
							| 29 | 28 | ralrimiva |  | 
						
							| 30 |  | rabeq0 |  | 
						
							| 31 | 29 30 | sylibr |  | 
						
							| 32 | 2 31 | eqtrid |  |