Metamath Proof Explorer


Theorem 01sqrexlem1

Description: Lemma for 01sqrex . (Contributed by Mario Carneiro, 10-Jul-2013)

Ref Expression
Hypotheses 01sqrexlem1.1 S=x+|x2A
01sqrexlem1.2 B=supS<
Assertion 01sqrexlem1 A+A1ySy1

Proof

Step Hyp Ref Expression
1 01sqrexlem1.1 S=x+|x2A
2 01sqrexlem1.2 B=supS<
3 oveq1 x=yx2=y2
4 3 breq1d x=yx2Ay2A
5 4 1 elrab2 ySy+y2A
6 simprr A+A1y+y2Ay2A
7 simplr A+A1y+y2AA1
8 rpre y+y
9 8 ad2antrl A+A1y+y2Ay
10 9 resqcld A+A1y+y2Ay2
11 rpre A+A
12 11 ad2antrr A+A1y+y2AA
13 1re 1
14 letr y2A1y2AA1y21
15 13 14 mp3an3 y2Ay2AA1y21
16 10 12 15 syl2anc A+A1y+y2Ay2AA1y21
17 6 7 16 mp2and A+A1y+y2Ay21
18 sq1 12=1
19 17 18 breqtrrdi A+A1y+y2Ay212
20 rpge0 y+0y
21 20 ad2antrl A+A1y+y2A0y
22 0le1 01
23 le2sq y0y101y1y212
24 13 22 23 mpanr12 y0yy1y212
25 9 21 24 syl2anc A+A1y+y2Ay1y212
26 19 25 mpbird A+A1y+y2Ay1
27 26 ex A+A1y+y2Ay1
28 5 27 biimtrid A+A1ySy1
29 28 ralrimiv A+A1ySy1