Metamath Proof Explorer


Theorem 0csh0

Description: Cyclically shifting an empty set/word always results in the empty word/set. (Contributed by AV, 25-Oct-2018) (Revised by AV, 17-Nov-2018)

Ref Expression
Assertion 0csh0 cyclShiftN=

Proof

Step Hyp Ref Expression
1 df-csh cyclShift=wf|l0fFn0..^l,nifw=wsubstrnmodww++wprefixnmodw
2 1 a1i NcyclShift=wf|l0fFn0..^l,nifw=wsubstrnmodww++wprefixnmodw
3 iftrue w=ifw=wsubstrnmodww++wprefixnmodw=
4 3 ad2antrl Nw=n=Nifw=wsubstrnmodww++wprefixnmodw=
5 0nn0 00
6 f0 :V
7 ffn :VFn
8 fzo0 0..^0=
9 8 eqcomi =0..^0
10 9 fneq2i FnFn0..^0
11 7 10 sylib :VFn0..^0
12 6 11 ax-mp Fn0..^0
13 id 0000
14 oveq2 l=00..^l=0..^0
15 14 fneq2d l=0Fn0..^lFn0..^0
16 15 adantl 00l=0Fn0..^lFn0..^0
17 13 16 rspcedv 00Fn0..^0l0Fn0..^l
18 5 12 17 mp2 l0Fn0..^l
19 0ex V
20 fneq1 f=fFn0..^lFn0..^l
21 20 rexbidv f=l0fFn0..^ll0Fn0..^l
22 19 21 elab f|l0fFn0..^ll0Fn0..^l
23 18 22 mpbir f|l0fFn0..^l
24 23 a1i Nf|l0fFn0..^l
25 id NN
26 19 a1i NV
27 2 4 24 25 26 ovmpod NcyclShiftN=
28 cshnz ¬NcyclShiftN=
29 27 28 pm2.61i cyclShiftN=