Metamath Proof Explorer


Theorem 0fucterm

Description: The category of functors from an initial category is terminal. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses 0fucterm.c φ C V
0fucterm.b φ = Base C
0fucterm.d φ D Cat
0fucterm.q Q = C FuncCat D
Assertion 0fucterm Could not format assertion : No typesetting found for |- ( ph -> Q e. TermCat ) with typecode |-

Proof

Step Hyp Ref Expression
1 0fucterm.c φ C V
2 0fucterm.b φ = Base C
3 0fucterm.d φ D Cat
4 0fucterm.q Q = C FuncCat D
5 4 fucbas C Func D = Base Q
6 5 a1i φ C Func D = Base Q
7 eqid C Nat D = C Nat D
8 4 7 fuchom C Nat D = Hom Q
9 8 a1i φ C Nat D = Hom Q
10 simprl φ f C Func D g C Func D a f C Nat D g b f C Nat D g a f C Nat D g
11 7 10 nat1st2nd φ f C Func D g C Func D a f C Nat D g b f C Nat D g a 1 st f 2 nd f C Nat D 1 st g 2 nd g
12 eqid Base C = Base C
13 7 11 12 natfn φ f C Func D g C Func D a f C Nat D g b f C Nat D g a Fn Base C
14 2 ad2antrr φ f C Func D g C Func D a f C Nat D g b f C Nat D g = Base C
15 14 fneq2d φ f C Func D g C Func D a f C Nat D g b f C Nat D g a Fn a Fn Base C
16 13 15 mpbird φ f C Func D g C Func D a f C Nat D g b f C Nat D g a Fn
17 fn0 a Fn a =
18 16 17 sylib φ f C Func D g C Func D a f C Nat D g b f C Nat D g a =
19 simprr φ f C Func D g C Func D a f C Nat D g b f C Nat D g b f C Nat D g
20 7 19 nat1st2nd φ f C Func D g C Func D a f C Nat D g b f C Nat D g b 1 st f 2 nd f C Nat D 1 st g 2 nd g
21 7 20 12 natfn φ f C Func D g C Func D a f C Nat D g b f C Nat D g b Fn Base C
22 14 fneq2d φ f C Func D g C Func D a f C Nat D g b f C Nat D g b Fn b Fn Base C
23 21 22 mpbird φ f C Func D g C Func D a f C Nat D g b f C Nat D g b Fn
24 fn0 b Fn b =
25 23 24 sylib φ f C Func D g C Func D a f C Nat D g b f C Nat D g b =
26 18 25 eqtr4d φ f C Func D g C Func D a f C Nat D g b f C Nat D g a = b
27 26 ralrimivva φ f C Func D g C Func D a f C Nat D g b f C Nat D g a = b
28 moel * a a f C Nat D g a f C Nat D g b f C Nat D g a = b
29 27 28 sylibr φ f C Func D g C Func D * a a f C Nat D g
30 0catg C V = Base C C Cat
31 1 2 30 syl2anc φ C Cat
32 4 31 3 fuccat φ Q Cat
33 6 9 29 32 isthincd φ Q ThinCat
34 opex V
35 34 a1i φ V
36 1 2 3 0funcg φ C Func D =
37 sneq f = f =
38 37 eqeq2d f = C Func D = f C Func D =
39 35 36 38 spcedv φ f C Func D = f
40 5 istermc Could not format ( Q e. TermCat <-> ( Q e. ThinCat /\ E. f ( C Func D ) = { f } ) ) : No typesetting found for |- ( Q e. TermCat <-> ( Q e. ThinCat /\ E. f ( C Func D ) = { f } ) ) with typecode |-
41 33 39 40 sylanbrc Could not format ( ph -> Q e. TermCat ) : No typesetting found for |- ( ph -> Q e. TermCat ) with typecode |-