Metamath Proof Explorer


Theorem termfucterm

Description: All functors between two terminal categories are isomorphisms. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses termfucterm.c C = CatCat U
termfucterm.b B = Base C
termfucterm.i I = Iso C
termfucterm.x φ X B
termfucterm.xt No typesetting found for |- ( ph -> X e. TermCat ) with typecode |-
termfucterm.y φ Y B
termfucterm.yt No typesetting found for |- ( ph -> Y e. TermCat ) with typecode |-
Assertion termfucterm φ X Func Y = X I Y

Proof

Step Hyp Ref Expression
1 termfucterm.c C = CatCat U
2 termfucterm.b B = Base C
3 termfucterm.i I = Iso C
4 termfucterm.x φ X B
5 termfucterm.xt Could not format ( ph -> X e. TermCat ) : No typesetting found for |- ( ph -> X e. TermCat ) with typecode |-
6 termfucterm.y φ Y B
7 termfucterm.yt Could not format ( ph -> Y e. TermCat ) : No typesetting found for |- ( ph -> Y e. TermCat ) with typecode |-
8 1 2 4 6 5 termcciso Could not format ( ph -> ( Y e. TermCat <-> X ( ~=c ` C ) Y ) ) : No typesetting found for |- ( ph -> ( Y e. TermCat <-> X ( ~=c ` C ) Y ) ) with typecode |-
9 7 8 mpbid φ X 𝑐 C Y
10 cicrcl2 X 𝑐 C Y C Cat
11 9 10 syl φ C Cat
12 3 2 11 4 6 cic φ X 𝑐 C Y g g X I Y
13 9 12 mpbid φ g g X I Y
14 13 adantr φ f X Func Y g g X I Y
15 eqid X FuncCat Y = X FuncCat Y
16 5 termccd φ X Cat
17 15 16 7 fucterm Could not format ( ph -> ( X FuncCat Y ) e. TermCat ) : No typesetting found for |- ( ph -> ( X FuncCat Y ) e. TermCat ) with typecode |-
18 17 ad2antrr Could not format ( ( ( ph /\ f e. ( X Func Y ) ) /\ g e. ( X I Y ) ) -> ( X FuncCat Y ) e. TermCat ) : No typesetting found for |- ( ( ( ph /\ f e. ( X Func Y ) ) /\ g e. ( X I Y ) ) -> ( X FuncCat Y ) e. TermCat ) with typecode |-
19 15 fucbas X Func Y = Base X FuncCat Y
20 simplr φ f X Func Y g X I Y f X Func Y
21 fullfunc X Full Y X Func Y
22 eqid Base X = Base X
23 eqid Base Y = Base Y
24 simpr φ f X Func Y g X I Y g X I Y
25 1 22 23 3 24 catcisoi φ f X Func Y g X I Y g X Full Y X Faith Y 1 st g : Base X 1-1 onto Base Y
26 25 simpld φ f X Func Y g X I Y g X Full Y X Faith Y
27 26 elin1d φ f X Func Y g X I Y g X Full Y
28 21 27 sselid φ f X Func Y g X I Y g X Func Y
29 18 19 20 28 termcbasmo φ f X Func Y g X I Y f = g
30 29 24 eqeltrd φ f X Func Y g X I Y f X I Y
31 14 30 exlimddv φ f X Func Y f X I Y
32 simpr φ f X I Y f X I Y
33 1 22 23 3 32 catcisoi φ f X I Y f X Full Y X Faith Y 1 st f : Base X 1-1 onto Base Y
34 33 simpld φ f X I Y f X Full Y X Faith Y
35 34 elin1d φ f X I Y f X Full Y
36 21 35 sselid φ f X I Y f X Func Y
37 31 36 impbida φ f X Func Y f X I Y
38 37 eqrdv φ X Func Y = X I Y