| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termfucterm.c |
⊢ 𝐶 = ( CatCat ‘ 𝑈 ) |
| 2 |
|
termfucterm.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
termfucterm.i |
⊢ 𝐼 = ( Iso ‘ 𝐶 ) |
| 4 |
|
termfucterm.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
|
termfucterm.xt |
⊢ ( 𝜑 → 𝑋 ∈ TermCat ) |
| 6 |
|
termfucterm.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 7 |
|
termfucterm.yt |
⊢ ( 𝜑 → 𝑌 ∈ TermCat ) |
| 8 |
1 2 4 6 5
|
termcciso |
⊢ ( 𝜑 → ( 𝑌 ∈ TermCat ↔ 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) ) |
| 9 |
7 8
|
mpbid |
⊢ ( 𝜑 → 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) |
| 10 |
|
cicrcl2 |
⊢ ( 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 → 𝐶 ∈ Cat ) |
| 11 |
9 10
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 12 |
3 2 11 4 6
|
cic |
⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ↔ ∃ 𝑔 𝑔 ∈ ( 𝑋 𝐼 𝑌 ) ) ) |
| 13 |
9 12
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑔 𝑔 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 Func 𝑌 ) ) → ∃ 𝑔 𝑔 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 15 |
|
eqid |
⊢ ( 𝑋 FuncCat 𝑌 ) = ( 𝑋 FuncCat 𝑌 ) |
| 16 |
5
|
termccd |
⊢ ( 𝜑 → 𝑋 ∈ Cat ) |
| 17 |
15 16 7
|
fucterm |
⊢ ( 𝜑 → ( 𝑋 FuncCat 𝑌 ) ∈ TermCat ) |
| 18 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 Func 𝑌 ) ) ∧ 𝑔 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 𝑋 FuncCat 𝑌 ) ∈ TermCat ) |
| 19 |
15
|
fucbas |
⊢ ( 𝑋 Func 𝑌 ) = ( Base ‘ ( 𝑋 FuncCat 𝑌 ) ) |
| 20 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 Func 𝑌 ) ) ∧ 𝑔 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑓 ∈ ( 𝑋 Func 𝑌 ) ) |
| 21 |
|
fullfunc |
⊢ ( 𝑋 Full 𝑌 ) ⊆ ( 𝑋 Func 𝑌 ) |
| 22 |
|
eqid |
⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) |
| 23 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
| 24 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 Func 𝑌 ) ) ∧ 𝑔 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑔 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 25 |
1 22 23 3 24
|
catcisoi |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 Func 𝑌 ) ) ∧ 𝑔 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 𝑔 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st ‘ 𝑔 ) : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) ) |
| 26 |
25
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 Func 𝑌 ) ) ∧ 𝑔 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑔 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ) |
| 27 |
26
|
elin1d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 Func 𝑌 ) ) ∧ 𝑔 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑔 ∈ ( 𝑋 Full 𝑌 ) ) |
| 28 |
21 27
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 Func 𝑌 ) ) ∧ 𝑔 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑔 ∈ ( 𝑋 Func 𝑌 ) ) |
| 29 |
18 19 20 28
|
termcbasmo |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 Func 𝑌 ) ) ∧ 𝑔 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑓 = 𝑔 ) |
| 30 |
29 24
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 Func 𝑌 ) ) ∧ 𝑔 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 31 |
14 30
|
exlimddv |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 Func 𝑌 ) ) → 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 33 |
1 22 23 3 32
|
catcisoi |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 𝑓 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st ‘ 𝑓 ) : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) ) |
| 34 |
33
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑓 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ) |
| 35 |
34
|
elin1d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑓 ∈ ( 𝑋 Full 𝑌 ) ) |
| 36 |
21 35
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑓 ∈ ( 𝑋 Func 𝑌 ) ) |
| 37 |
31 36
|
impbida |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑋 Func 𝑌 ) ↔ 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ) ) |
| 38 |
37
|
eqrdv |
⊢ ( 𝜑 → ( 𝑋 Func 𝑌 ) = ( 𝑋 𝐼 𝑌 ) ) |