Metamath Proof Explorer


Theorem 0nonelalab

Description: Technical lemma for open interval. (Contributed by metakunt, 12-Aug-2024)

Ref Expression
Hypotheses 0nonelaleb.1 φA
0nonelaleb.2 φB
0nonelaleb.3 φ0<A
0nonelaleb.4 φAB
0nonelalab.5 φCAB
Assertion 0nonelalab φ0C

Proof

Step Hyp Ref Expression
1 0nonelaleb.1 φA
2 0nonelaleb.2 φB
3 0nonelaleb.3 φ0<A
4 0nonelaleb.4 φAB
5 0nonelalab.5 φCAB
6 0red φ0
7 elioore CABC
8 5 7 syl φC
9 1 rexrd φA*
10 2 rexrd φB*
11 elioo2 A*B*CABCA<CC<B
12 9 10 11 syl2anc φCABCA<CC<B
13 5 12 mpbid φCA<CC<B
14 13 simp2d φA<C
15 6 1 8 3 14 lttrd φ0<C
16 6 15 ltned φ0C