Metamath Proof Explorer


Theorem 0ring01eqbi

Description: In a unital ring the zero equals the unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010) (Revised by AV, 23-Jan-2020)

Ref Expression
Hypotheses 0ring.b B=BaseR
0ring.0 0˙=0R
0ring01eq.1 1˙=1R
Assertion 0ring01eqbi RRingB1𝑜1˙=0˙

Proof

Step Hyp Ref Expression
1 0ring.b B=BaseR
2 0ring.0 0˙=0R
3 0ring01eq.1 1˙=1R
4 1 fvexi BV
5 hashen1 BVB=1B1𝑜
6 4 5 mp1i RRingB=1B1𝑜
7 1 2 3 0ring01eq RRingB=10˙=1˙
8 7 eqcomd RRingB=11˙=0˙
9 8 ex RRingB=11˙=0˙
10 eqcom 1˙=0˙0˙=1˙
11 1 2 3 01eq0ring RRing0˙=1˙B=0˙
12 fveq2 B=0˙B=0˙
13 2 fvexi 0˙V
14 hashsng 0˙V0˙=1
15 13 14 mp1i B=0˙0˙=1
16 12 15 eqtrd B=0˙B=1
17 11 16 syl RRing0˙=1˙B=1
18 17 ex RRing0˙=1˙B=1
19 10 18 biimtrid RRing1˙=0˙B=1
20 9 19 impbid RRingB=11˙=0˙
21 6 20 bitr3d RRingB1𝑜1˙=0˙