Description: In a unital ring the zero equals the unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010) (Revised by AV, 23-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 0ring.b | |
|
0ring.0 | |
||
0ring01eq.1 | |
||
Assertion | 0ring01eqbi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ring.b | |
|
2 | 0ring.0 | |
|
3 | 0ring01eq.1 | |
|
4 | 1 | fvexi | |
5 | hashen1 | |
|
6 | 4 5 | mp1i | |
7 | 1 2 3 | 0ring01eq | |
8 | 7 | eqcomd | |
9 | 8 | ex | |
10 | eqcom | |
|
11 | 1 2 3 | 01eq0ring | |
12 | fveq2 | |
|
13 | 2 | fvexi | |
14 | hashsng | |
|
15 | 13 14 | mp1i | |
16 | 12 15 | eqtrd | |
17 | 11 16 | syl | |
18 | 17 | ex | |
19 | 10 18 | biimtrid | |
20 | 9 19 | impbid | |
21 | 6 20 | bitr3d | |