Description: A subring of a zero ring is a zero ring. (Contributed by Thierry Arnoux, 5-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 0ringsubrg.1 | |
|
0ringsubrg.2 | |
||
0ringsubrg.3 | |
||
0ringsubrg.4 | |
||
Assertion | 0ringsubrg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ringsubrg.1 | |
|
2 | 0ringsubrg.2 | |
|
3 | 0ringsubrg.3 | |
|
4 | 0ringsubrg.4 | |
|
5 | 1 | subrgss | |
6 | 4 5 | syl | |
7 | eqid | |
|
8 | 1 7 | 0ring | |
9 | 2 3 8 | syl2anc | |
10 | 6 9 | sseqtrd | |
11 | sssn | |
|
12 | 10 11 | sylib | |
13 | eqid | |
|
14 | 13 | subrg1cl | |
15 | 4 14 | syl | |
16 | n0i | |
|
17 | 15 16 | syl | |
18 | 12 17 | orcnd | |
19 | 18 | fveq2d | |
20 | fvex | |
|
21 | hashsng | |
|
22 | 20 21 | ax-mp | |
23 | 19 22 | eqtrdi | |