Metamath Proof Explorer


Theorem 0ringsubrg

Description: A subring of a zero ring is a zero ring. (Contributed by Thierry Arnoux, 5-Feb-2025)

Ref Expression
Hypotheses 0ringsubrg.1 B=BaseR
0ringsubrg.2 φRRing
0ringsubrg.3 φB=1
0ringsubrg.4 φSSubRingR
Assertion 0ringsubrg φS=1

Proof

Step Hyp Ref Expression
1 0ringsubrg.1 B=BaseR
2 0ringsubrg.2 φRRing
3 0ringsubrg.3 φB=1
4 0ringsubrg.4 φSSubRingR
5 1 subrgss SSubRingRSB
6 4 5 syl φSB
7 eqid 0R=0R
8 1 7 0ring RRingB=1B=0R
9 2 3 8 syl2anc φB=0R
10 6 9 sseqtrd φS0R
11 sssn S0RS=S=0R
12 10 11 sylib φS=S=0R
13 eqid 1R=1R
14 13 subrg1cl SSubRingR1RS
15 4 14 syl φ1RS
16 n0i 1RS¬S=
17 15 16 syl φ¬S=
18 12 17 orcnd φS=0R
19 18 fveq2d φS=0R
20 fvex 0RV
21 hashsng 0RV0R=1
22 20 21 ax-mp 0R=1
23 19 22 eqtrdi φS=1