Description: In a ring, any multiple of the characteristics annihilates all elements. (Contributed by Thierry Arnoux, 6-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvdschrmulg.1 | |
|
dvdschrmulg.2 | |
||
dvdschrmulg.3 | |
||
dvdschrmulg.4 | |
||
Assertion | dvdschrmulg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdschrmulg.1 | |
|
2 | dvdschrmulg.2 | |
|
3 | dvdschrmulg.3 | |
|
4 | dvdschrmulg.4 | |
|
5 | simp1 | |
|
6 | dvdszrcl | |
|
7 | 6 | simprd | |
8 | 7 | 3ad2ant2 | |
9 | eqid | |
|
10 | 2 9 | ringidcl | |
11 | 5 10 | syl | |
12 | simp3 | |
|
13 | eqid | |
|
14 | 2 3 13 | mulgass2 | |
15 | 5 8 11 12 14 | syl13anc | |
16 | ringgrp | |
|
17 | 5 16 | syl | |
18 | eqid | |
|
19 | 18 9 1 | chrval | |
20 | simp2 | |
|
21 | 19 20 | eqbrtrid | |
22 | 2 18 3 4 | oddvdsi | |
23 | 17 11 21 22 | syl3anc | |
24 | 23 | oveq1d | |
25 | 2 13 4 | ringlz | |
26 | 25 | 3adant2 | |
27 | 24 26 | eqtrd | |
28 | 2 13 9 | ringlidm | |
29 | 28 | 3adant2 | |
30 | 29 | oveq2d | |
31 | 15 27 30 | 3eqtr3rd | |