Metamath Proof Explorer


Theorem dvdschrmulg

Description: In a ring, any multiple of the characteristics annihilates all elements. (Contributed by Thierry Arnoux, 6-Sep-2016)

Ref Expression
Hypotheses dvdschrmulg.1 C = chr R
dvdschrmulg.2 B = Base R
dvdschrmulg.3 · ˙ = R
dvdschrmulg.4 0 ˙ = 0 R
Assertion dvdschrmulg R Ring C N A B N · ˙ A = 0 ˙

Proof

Step Hyp Ref Expression
1 dvdschrmulg.1 C = chr R
2 dvdschrmulg.2 B = Base R
3 dvdschrmulg.3 · ˙ = R
4 dvdschrmulg.4 0 ˙ = 0 R
5 simp1 R Ring C N A B R Ring
6 dvdszrcl C N C N
7 6 simprd C N N
8 7 3ad2ant2 R Ring C N A B N
9 eqid 1 R = 1 R
10 2 9 ringidcl R Ring 1 R B
11 5 10 syl R Ring C N A B 1 R B
12 simp3 R Ring C N A B A B
13 eqid R = R
14 2 3 13 mulgass2 R Ring N 1 R B A B N · ˙ 1 R R A = N · ˙ 1 R R A
15 5 8 11 12 14 syl13anc R Ring C N A B N · ˙ 1 R R A = N · ˙ 1 R R A
16 ringgrp R Ring R Grp
17 5 16 syl R Ring C N A B R Grp
18 eqid od R = od R
19 18 9 1 chrval od R 1 R = C
20 simp2 R Ring C N A B C N
21 19 20 eqbrtrid R Ring C N A B od R 1 R N
22 2 18 3 4 oddvdsi R Grp 1 R B od R 1 R N N · ˙ 1 R = 0 ˙
23 17 11 21 22 syl3anc R Ring C N A B N · ˙ 1 R = 0 ˙
24 23 oveq1d R Ring C N A B N · ˙ 1 R R A = 0 ˙ R A
25 2 13 4 ringlz R Ring A B 0 ˙ R A = 0 ˙
26 25 3adant2 R Ring C N A B 0 ˙ R A = 0 ˙
27 24 26 eqtrd R Ring C N A B N · ˙ 1 R R A = 0 ˙
28 2 13 9 ringlidm R Ring A B 1 R R A = A
29 28 3adant2 R Ring C N A B 1 R R A = A
30 29 oveq2d R Ring C N A B N · ˙ 1 R R A = N · ˙ A
31 15 27 30 3eqtr3rd R Ring C N A B N · ˙ A = 0 ˙