Metamath Proof Explorer


Theorem dvdschrmulg

Description: In a ring, any multiple of the characteristics annihilates all elements. (Contributed by Thierry Arnoux, 6-Sep-2016)

Ref Expression
Hypotheses dvdschrmulg.1 C=chrR
dvdschrmulg.2 B=BaseR
dvdschrmulg.3 ·˙=R
dvdschrmulg.4 0˙=0R
Assertion dvdschrmulg RRingCNABN·˙A=0˙

Proof

Step Hyp Ref Expression
1 dvdschrmulg.1 C=chrR
2 dvdschrmulg.2 B=BaseR
3 dvdschrmulg.3 ·˙=R
4 dvdschrmulg.4 0˙=0R
5 simp1 RRingCNABRRing
6 dvdszrcl CNCN
7 6 simprd CNN
8 7 3ad2ant2 RRingCNABN
9 eqid 1R=1R
10 2 9 ringidcl RRing1RB
11 5 10 syl RRingCNAB1RB
12 simp3 RRingCNABAB
13 eqid R=R
14 2 3 13 mulgass2 RRingN1RBABN·˙1RRA=N·˙1RRA
15 5 8 11 12 14 syl13anc RRingCNABN·˙1RRA=N·˙1RRA
16 ringgrp RRingRGrp
17 5 16 syl RRingCNABRGrp
18 eqid odR=odR
19 18 9 1 chrval odR1R=C
20 simp2 RRingCNABCN
21 19 20 eqbrtrid RRingCNABodR1RN
22 2 18 3 4 oddvdsi RGrp1RBodR1RNN·˙1R=0˙
23 17 11 21 22 syl3anc RRingCNABN·˙1R=0˙
24 23 oveq1d RRingCNABN·˙1RRA=0˙RA
25 2 13 4 ringlz RRingAB0˙RA=0˙
26 25 3adant2 RRingCNAB0˙RA=0˙
27 24 26 eqtrd RRingCNABN·˙1RRA=0˙
28 2 13 9 ringlidm RRingAB1RRA=A
29 28 3adant2 RRingCNAB1RRA=A
30 29 oveq2d RRingCNABN·˙1RRA=N·˙A
31 15 27 30 3eqtr3rd RRingCNABN·˙A=0˙