Metamath Proof Explorer


Theorem 1259lem1

Description: Lemma for 1259prm . Calculate a power mod. In decimal, we calculate 2 ^ 1 6 = 5 2 N + 6 8 == 6 8 and 2 ^ 1 7 == 6 8 x. 2 = 1 3 6 in this lemma. (Contributed by Mario Carneiro, 22-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015) (Proof shortened by AV, 16-Sep-2021)

Ref Expression
Hypothesis 1259prm.1 N=1259
Assertion 1259lem1 217modN=136modN

Proof

Step Hyp Ref Expression
1 1259prm.1 N=1259
2 1nn0 10
3 2nn0 20
4 2 3 deccl 120
5 5nn0 50
6 4 5 deccl 1250
7 9nn 9
8 6 7 decnncl 1259
9 1 8 eqeltri N
10 2nn 2
11 6nn0 60
12 2 11 deccl 160
13 0z 0
14 8nn0 80
15 11 14 deccl 680
16 3nn0 30
17 2 16 deccl 130
18 17 11 deccl 1360
19 5 3 deccl 520
20 19 nn0zi 52
21 3 14 nn0expcli 280
22 eqid 28modN=28modN
23 14 nn0cni 8
24 2cn 2
25 8t2e16 82=16
26 23 24 25 mulcomli 28=16
27 9nn0 90
28 eqid 68=68
29 4nn0 40
30 7nn0 70
31 29 30 deccl 470
32 eqid 125=125
33 0nn0 00
34 11 dec0h 6=06
35 eqid 47=47
36 4cn 4
37 36 addlidi 0+4=4
38 37 oveq1i 0+4+1=4+1
39 4p1e5 4+1=5
40 38 39 eqtri 0+4+1=5
41 7cn 7
42 6cn 6
43 7p6e13 7+6=13
44 41 42 43 addcomli 6+7=13
45 33 11 29 30 34 35 40 16 44 decaddc 6+47=53
46 3 11 deccl 260
47 eqid 12=12
48 5 dec0h 5=05
49 eqid 26=26
50 24 addlidi 0+2=2
51 50 oveq1i 0+2+1=2+1
52 2p1e3 2+1=3
53 51 52 eqtri 0+2+1=3
54 5cn 5
55 6p5e11 6+5=11
56 42 54 55 addcomli 5+6=11
57 33 5 3 11 48 49 53 2 56 decaddc 5+26=31
58 10nn0 100
59 eqid 52=52
60 58 nn0cni 10
61 3cn 3
62 dec10p 10+3=13
63 60 61 62 addcomli 3+10=13
64 54 mulridi 51=5
65 1p0e1 1+0=1
66 64 65 oveq12i 51+1+0=5+1
67 5p1e6 5+1=6
68 66 67 eqtri 51+1+0=6
69 24 mulridi 21=2
70 69 oveq1i 21+3=2+3
71 3p2e5 3+2=5
72 61 24 71 addcomli 2+3=5
73 70 72 48 3eqtri 21+3=05
74 5 3 2 16 59 63 2 5 33 68 73 decmac 521+3+10=65
75 2 dec0h 1=01
76 5t2e10 52=10
77 00id 0+0=0
78 76 77 oveq12i 52+0+0=10+0
79 dec10p 10+0=10
80 78 79 eqtri 52+0+0=10
81 2t2e4 22=4
82 81 oveq1i 22+1=4+1
83 82 39 48 3eqtri 22+1=05
84 5 3 33 2 59 75 3 5 33 80 83 decmac 522+1=105
85 2 3 16 2 47 57 19 5 58 74 84 decma2c 5212+5+26=655
86 5t5e25 55=25
87 3 5 67 86 decsuc 55+1=26
88 54 24 76 mulcomli 25=10
89 61 addlidi 0+3=3
90 2 33 16 88 89 decaddi 25+3=13
91 5 3 16 59 5 16 2 87 90 decrmac 525+3=263
92 4 5 5 16 32 45 19 16 46 85 91 decma2c 52125+6+47=6553
93 9cn 9
94 9t5e45 95=45
95 93 54 94 mulcomli 59=45
96 5p2e7 5+2=7
97 29 5 3 95 96 decaddi 59+2=47
98 9t2e18 92=18
99 93 24 98 mulcomli 29=18
100 1p1e2 1+1=2
101 8p8e16 8+8=16
102 2 14 14 99 100 11 101 decaddci 29+8=26
103 5 3 14 59 27 11 3 97 102 decrmac 529+8=476
104 6 27 11 14 1 28 19 11 31 92 103 decma2c 52 N+68=65536
105 2exp16 216=65536
106 eqid 28=28
107 eqid 2828=2828
108 3 14 26 106 107 numexp2x 216=2828
109 104 105 108 3eqtr2i 52 N+68=2828
110 9 10 14 20 21 15 22 26 109 mod2xi 216modN=68modN
111 6p1e7 6+1=7
112 eqid 16=16
113 2 11 111 112 decsuc 16+1=17
114 18 nn0cni 136
115 114 addlidi 0+136=136
116 9 nncni N
117 116 mul02i 0 N=0
118 117 oveq1i 0 N+136=0+136
119 6t2e12 62=12
120 2 3 52 119 decsuc 62+1=13
121 3 11 14 28 11 2 120 25 decmul1c 682=136
122 115 118 121 3eqtr4i 0 N+136=682
123 9 10 12 13 15 18 110 113 122 modxp1i 217modN=136modN