| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1arith.1 |
|
| 2 |
|
1arithlem4.2 |
|
| 3 |
|
1arithlem4.3 |
|
| 4 |
|
1arithlem4.4 |
|
| 5 |
|
1arithlem4.5 |
|
| 6 |
3
|
ffvelcdmda |
|
| 7 |
6
|
ralrimiva |
|
| 8 |
2 7
|
pcmptcl |
|
| 9 |
8
|
simprd |
|
| 10 |
9 4
|
ffvelcdmd |
|
| 11 |
1
|
1arithlem2 |
|
| 12 |
10 11
|
sylan |
|
| 13 |
7
|
adantr |
|
| 14 |
4
|
adantr |
|
| 15 |
|
simpr |
|
| 16 |
|
fveq2 |
|
| 17 |
2 13 14 15 16
|
pcmpt |
|
| 18 |
14
|
nnred |
|
| 19 |
|
prmz |
|
| 20 |
19
|
zred |
|
| 21 |
20
|
adantl |
|
| 22 |
5
|
anassrs |
|
| 23 |
22
|
ifeq2d |
|
| 24 |
|
ifid |
|
| 25 |
23 24
|
eqtr3di |
|
| 26 |
|
iftrue |
|
| 27 |
26
|
adantl |
|
| 28 |
18 21 25 27
|
lecasei |
|
| 29 |
12 17 28
|
3eqtrrd |
|
| 30 |
29
|
ralrimiva |
|
| 31 |
1
|
1arithlem3 |
|
| 32 |
10 31
|
syl |
|
| 33 |
|
ffn |
|
| 34 |
|
ffn |
|
| 35 |
|
eqfnfv |
|
| 36 |
33 34 35
|
syl2an |
|
| 37 |
3 32 36
|
syl2anc |
|
| 38 |
30 37
|
mpbird |
|
| 39 |
|
fveq2 |
|
| 40 |
39
|
rspceeqv |
|
| 41 |
10 38 40
|
syl2anc |
|