Metamath Proof Explorer


Theorem 1loopgrnb0

Description: In a graph (simple pseudograph) with one edge which is a loop, the vertex connected with itself by the loop has no neighbors. (Contributed by AV, 17-Dec-2020) (Revised by AV, 21-Feb-2021)

Ref Expression
Hypotheses 1loopgruspgr.v φVtxG=V
1loopgruspgr.a φAX
1loopgruspgr.n φNV
1loopgruspgr.i φiEdgG=AN
Assertion 1loopgrnb0 φGNeighbVtxN=

Proof

Step Hyp Ref Expression
1 1loopgruspgr.v φVtxG=V
2 1loopgruspgr.a φAX
3 1loopgruspgr.n φNV
4 1loopgruspgr.i φiEdgG=AN
5 1 2 3 4 1loopgruspgr φGUSHGraph
6 uspgrupgr GUSHGraphGUPGraph
7 5 6 syl φGUPGraph
8 1 eleq2d φNVtxGNV
9 3 8 mpbird φNVtxG
10 eqid VtxG=VtxG
11 eqid EdgG=EdgG
12 10 11 nbupgr GUPGraphNVtxGGNeighbVtxN=vVtxGN|NvEdgG
13 7 9 12 syl2anc φGNeighbVtxN=vVtxGN|NvEdgG
14 1 difeq1d φVtxGN=VN
15 14 eleq2d φvVtxGNvVN
16 eldifsn vVNvVvN
17 3 adantr φvVNV
18 simpr φvVvV
19 17 18 preqsnd φvVNv=NN=Nv=N
20 simpr N=Nv=Nv=N
21 19 20 syl6bi φvVNv=Nv=N
22 21 necon3ad φvVvN¬Nv=N
23 22 expimpd φvVvN¬Nv=N
24 16 23 biimtrid φvVN¬Nv=N
25 15 24 sylbid φvVtxGN¬Nv=N
26 25 imp φvVtxGN¬Nv=N
27 1 2 3 4 1loopgredg φEdgG=N
28 27 eleq2d φNvEdgGNvN
29 prex NvV
30 29 elsn NvNNv=N
31 28 30 bitrdi φNvEdgGNv=N
32 31 notbid φ¬NvEdgG¬Nv=N
33 32 adantr φvVtxGN¬NvEdgG¬Nv=N
34 26 33 mpbird φvVtxGN¬NvEdgG
35 34 ralrimiva φvVtxGN¬NvEdgG
36 rabeq0 vVtxGN|NvEdgG=vVtxGN¬NvEdgG
37 35 36 sylibr φvVtxGN|NvEdgG=
38 13 37 eqtrd φGNeighbVtxN=