Description: In a graph (simple pseudograph) with one edge which is a loop, the vertex connected with itself by the loop has no neighbors. (Contributed by AV, 17-Dec-2020) (Revised by AV, 21-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 1loopgruspgr.v | |
|
1loopgruspgr.a | |
||
1loopgruspgr.n | |
||
1loopgruspgr.i | |
||
Assertion | 1loopgrnb0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1loopgruspgr.v | |
|
2 | 1loopgruspgr.a | |
|
3 | 1loopgruspgr.n | |
|
4 | 1loopgruspgr.i | |
|
5 | 1 2 3 4 | 1loopgruspgr | |
6 | uspgrupgr | |
|
7 | 5 6 | syl | |
8 | 1 | eleq2d | |
9 | 3 8 | mpbird | |
10 | eqid | |
|
11 | eqid | |
|
12 | 10 11 | nbupgr | |
13 | 7 9 12 | syl2anc | |
14 | 1 | difeq1d | |
15 | 14 | eleq2d | |
16 | eldifsn | |
|
17 | 3 | adantr | |
18 | simpr | |
|
19 | 17 18 | preqsnd | |
20 | simpr | |
|
21 | 19 20 | syl6bi | |
22 | 21 | necon3ad | |
23 | 22 | expimpd | |
24 | 16 23 | biimtrid | |
25 | 15 24 | sylbid | |
26 | 25 | imp | |
27 | 1 2 3 4 | 1loopgredg | |
28 | 27 | eleq2d | |
29 | prex | |
|
30 | 29 | elsn | |
31 | 28 30 | bitrdi | |
32 | 31 | notbid | |
33 | 32 | adantr | |
34 | 26 33 | mpbird | |
35 | 34 | ralrimiva | |
36 | rabeq0 | |
|
37 | 35 36 | sylibr | |
38 | 13 37 | eqtrd | |