Metamath Proof Explorer


Theorem 1mod

Description: Special case: 1 modulo a real number greater than 1 is 1. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Assertion 1mod N1<N1modN=1

Proof

Step Hyp Ref Expression
1 0lt1 0<1
2 0re 0
3 1re 1
4 lttr 01N0<11<N0<N
5 2 3 4 mp3an12 N0<11<N0<N
6 1 5 mpani N1<N0<N
7 6 imdistani N1<NN0<N
8 elrp N+N0<N
9 7 8 sylibr N1<NN+
10 9 3 jctil N1<N1N+
11 simpr N1<N1<N
12 0le1 01
13 11 12 jctil N1<N011<N
14 modid 1N+011<N1modN=1
15 10 13 14 syl2anc N1<N1modN=1