Metamath Proof Explorer


Theorem 1re

Description: The number 1 is real. This used to be one of our postulates for complex numbers, but Eric Schmidt discovered that it could be derived from a weaker postulate, ax-1cn , by exploiting properties of the imaginary unit _i . (Contributed by Eric Schmidt, 11-Apr-2007) (Revised by Scott Fenton, 3-Jan-2013)

Ref Expression
Assertion 1re 1

Proof

Step Hyp Ref Expression
1 ax-1ne0 10
2 ax-1cn 1
3 cnre 1ab1=a+ib
4 2 3 ax-mp ab1=a+ib
5 neeq1 1=a+ib10a+ib0
6 5 biimpcd 101=a+iba+ib0
7 0cn 0
8 cnre 0cd0=c+id
9 7 8 ax-mp cd0=c+id
10 neeq2 0=c+ida+ib0a+ibc+id
11 10 biimpcd a+ib00=c+ida+ibc+id
12 11 reximdv a+ib0d0=c+idda+ibc+id
13 12 reximdv a+ib0cd0=c+idcda+ibc+id
14 6 9 13 syl6mpi 101=a+ibcda+ibc+id
15 14 reximdv 10b1=a+ibbcda+ibc+id
16 15 reximdv 10ab1=a+ibabcda+ibc+id
17 4 16 mpi 10abcda+ibc+id
18 ioran ¬acbd¬ac¬bd
19 df-ne ac¬a=c
20 19 con2bii a=c¬ac
21 df-ne bd¬b=d
22 21 con2bii b=d¬bd
23 20 22 anbi12i a=cb=d¬ac¬bd
24 18 23 bitr4i ¬acbda=cb=d
25 id a=ca=c
26 oveq2 b=dib=id
27 25 26 oveqan12d a=cb=da+ib=c+id
28 24 27 sylbi ¬acbda+ib=c+id
29 28 necon1ai a+ibc+idacbd
30 neeq1 x=axyay
31 neeq2 y=cayac
32 30 31 rspc2ev acacxyxy
33 32 3expia acacxyxy
34 33 ad2ant2r abcdacxyxy
35 neeq1 x=bxyby
36 neeq2 y=dbybd
37 35 36 rspc2ev bdbdxyxy
38 37 3expia bdbdxyxy
39 38 ad2ant2l abcdbdxyxy
40 34 39 jaod abcdacbdxyxy
41 29 40 syl5 abcda+ibc+idxyxy
42 41 rexlimdvva abcda+ibc+idxyxy
43 42 rexlimivv abcda+ibc+idxyxy
44 1 17 43 mp2b xyxy
45 eqtr3 x=0y=0x=y
46 45 ex x=0y=0x=y
47 46 necon3d x=0xyy0
48 neeq1 z=yz0y0
49 48 rspcev yy0zz0
50 49 expcom y0yzz0
51 47 50 syl6 x=0xyyzz0
52 51 com23 x=0yxyzz0
53 52 adantld x=0xyxyzz0
54 neeq1 z=xz0x0
55 54 rspcev xx0zz0
56 55 expcom x0xzz0
57 56 adantrd x0xyzz0
58 57 a1dd x0xyxyzz0
59 53 58 pm2.61ine xyxyzz0
60 59 rexlimivv xyxyzz0
61 ax-rrecex zz0xzx=1
62 remulcl zxzx
63 62 adantlr zz0xzx
64 eleq1 zx=1zx1
65 63 64 syl5ibcom zz0xzx=11
66 65 rexlimdva zz0xzx=11
67 61 66 mpd zz01
68 67 rexlimiva zz01
69 44 60 68 mp2b 1