Description: The number 1 is real. This used to be one of our postulates for complex numbers, but Eric Schmidt discovered that it could be derived from a weaker postulate, ax-1cn , by exploiting properties of the imaginary unit _i . (Contributed by Eric Schmidt, 11-Apr-2007) (Revised by Scott Fenton, 3-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | 1re | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1ne0 | |
|
2 | ax-1cn | |
|
3 | cnre | |
|
4 | 2 3 | ax-mp | |
5 | neeq1 | |
|
6 | 5 | biimpcd | |
7 | 0cn | |
|
8 | cnre | |
|
9 | 7 8 | ax-mp | |
10 | neeq2 | |
|
11 | 10 | biimpcd | |
12 | 11 | reximdv | |
13 | 12 | reximdv | |
14 | 6 9 13 | syl6mpi | |
15 | 14 | reximdv | |
16 | 15 | reximdv | |
17 | 4 16 | mpi | |
18 | ioran | |
|
19 | df-ne | |
|
20 | 19 | con2bii | |
21 | df-ne | |
|
22 | 21 | con2bii | |
23 | 20 22 | anbi12i | |
24 | 18 23 | bitr4i | |
25 | id | |
|
26 | oveq2 | |
|
27 | 25 26 | oveqan12d | |
28 | 24 27 | sylbi | |
29 | 28 | necon1ai | |
30 | neeq1 | |
|
31 | neeq2 | |
|
32 | 30 31 | rspc2ev | |
33 | 32 | 3expia | |
34 | 33 | ad2ant2r | |
35 | neeq1 | |
|
36 | neeq2 | |
|
37 | 35 36 | rspc2ev | |
38 | 37 | 3expia | |
39 | 38 | ad2ant2l | |
40 | 34 39 | jaod | |
41 | 29 40 | syl5 | |
42 | 41 | rexlimdvva | |
43 | 42 | rexlimivv | |
44 | 1 17 43 | mp2b | |
45 | eqtr3 | |
|
46 | 45 | ex | |
47 | 46 | necon3d | |
48 | neeq1 | |
|
49 | 48 | rspcev | |
50 | 49 | expcom | |
51 | 47 50 | syl6 | |
52 | 51 | com23 | |
53 | 52 | adantld | |
54 | neeq1 | |
|
55 | 54 | rspcev | |
56 | 55 | expcom | |
57 | 56 | adantrd | |
58 | 57 | a1dd | |
59 | 53 58 | pm2.61ine | |
60 | 59 | rexlimivv | |
61 | ax-rrecex | |
|
62 | remulcl | |
|
63 | 62 | adantlr | |
64 | eleq1 | |
|
65 | 63 64 | syl5ibcom | |
66 | 65 | rexlimdva | |
67 | 61 66 | mpd | |
68 | 67 | rexlimiva | |
69 | 44 60 68 | mp2b | |