Metamath Proof Explorer


Theorem 1stcof

Description: Composition of the first member function with another function. (Contributed by NM, 12-Oct-2007)

Ref Expression
Assertion 1stcof F:AB×C1stF:AB

Proof

Step Hyp Ref Expression
1 fo1st 1st:VontoV
2 fofn 1st:VontoV1stFnV
3 1 2 ax-mp 1stFnV
4 ffn F:AB×CFFnA
5 dffn2 FFnAF:AV
6 4 5 sylib F:AB×CF:AV
7 fnfco 1stFnVF:AV1stFFnA
8 3 6 7 sylancr F:AB×C1stFFnA
9 rnco ran1stF=ran1stranF
10 frn F:AB×CranFB×C
11 ssres2 ranFB×C1stranF1stB×C
12 rnss 1stranF1stB×Cran1stranFran1stB×C
13 10 11 12 3syl F:AB×Cran1stranFran1stB×C
14 f1stres 1stB×C:B×CB
15 frn 1stB×C:B×CBran1stB×CB
16 14 15 ax-mp ran1stB×CB
17 13 16 sstrdi F:AB×Cran1stranFB
18 9 17 eqsstrid F:AB×Cran1stFB
19 df-f 1stF:AB1stFFnAran1stFB
20 8 18 19 sylanbrc F:AB×C1stF:AB