Metamath Proof Explorer


Theorem 2503prm

Description: 2503 is a prime number. (Contributed by Mario Carneiro, 3-Mar-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)

Ref Expression
Hypothesis 2503prm.1 N=2503
Assertion 2503prm N

Proof

Step Hyp Ref Expression
1 2503prm.1 N=2503
2 139prm 139
3 1nn0 10
4 8nn 8
5 3 4 decnncl 18
6 2nn0 20
7 5nn0 50
8 6 7 deccl 250
9 0nn0 00
10 8 9 deccl 2500
11 2p1e3 2+1=3
12 eqid 2502=2502
13 10 6 11 12 decsuc 2502+1=2503
14 1 13 eqtr4i N=2502+1
15 14 oveq1i N1=2502+1-1
16 8nn0 80
17 3 16 deccl 180
18 3nn0 30
19 3 18 deccl 130
20 9nn0 90
21 eqid 139=139
22 6nn0 60
23 3 22 deccl 160
24 eqid 13=13
25 eqid 16=16
26 7nn0 70
27 eqid 18=18
28 6cn 6
29 ax-1cn 1
30 6p1e7 6+1=7
31 28 29 30 addcomli 1+6=7
32 26 dec0h 7=07
33 31 32 eqtri 1+6=07
34 29 mulridi 11=1
35 29 addlidi 0+1=1
36 34 35 oveq12i 11+0+1=1+1
37 1p1e2 1+1=2
38 36 37 eqtri 11+0+1=2
39 8cn 8
40 39 mulridi 81=8
41 40 oveq1i 81+7=8+7
42 8p7e15 8+7=15
43 41 42 eqtri 81+7=15
44 3 16 9 26 27 33 3 7 3 38 43 decmac 181+1+6=25
45 22 dec0h 6=06
46 3cn 3
47 46 mullidi 13=3
48 46 addlidi 0+3=3
49 47 48 oveq12i 13+0+3=3+3
50 3p3e6 3+3=6
51 49 50 eqtri 13+0+3=6
52 4nn0 40
53 8t3e24 83=24
54 4cn 4
55 6p4e10 6+4=10
56 28 54 55 addcomli 4+6=10
57 6 52 22 53 11 56 decaddci2 83+6=30
58 3 16 9 22 27 45 18 9 18 51 57 decmac 183+6=60
59 3 18 3 22 24 25 17 9 22 44 58 decma2c 1813+16=250
60 9cn 9
61 60 mullidi 19=9
62 61 oveq1i 19+7=9+7
63 9p7e16 9+7=16
64 62 63 eqtri 19+7=16
65 9t8e72 98=72
66 60 39 65 mulcomli 89=72
67 20 3 16 27 6 26 64 66 decmul1c 189=162
68 17 19 20 21 6 23 59 67 decmul2c 18139=2502
69 10 6 deccl 25020
70 69 nn0cni 2502
71 70 29 pncan3oi 2502+1-1=2502
72 68 71 eqtr4i 18139=2502+1-1
73 15 72 eqtr4i N1=18139
74 10 18 deccl 25030
75 1 74 eqeltri N0
76 75 nn0cni N
77 npcan N1N-1+1=N
78 76 29 77 mp2an N-1+1=N
79 78 eqcomi N=N-1+1
80 1nn 1
81 2nn 2
82 19 20 deccl 1390
83 82 numexp1 1391=139
84 83 oveq2i 181391=18139
85 73 84 eqtr4i N1=181391
86 8lt10 8<10
87 1lt10 1<10
88 80 18 3 87 declti 1<13
89 3 19 16 20 86 88 decltc 18<139
90 89 83 breqtrri 18<1391
91 1 2503lem2 2N1modN=1modN
92 1 2503lem3 2181gcdN=1
93 2 5 73 79 5 80 81 85 90 91 92 pockthi N