Metamath Proof Explorer


Theorem 2atlt

Description: Given an atom less than an element, there is another atom less than the element. (Contributed by NM, 6-May-2012)

Ref Expression
Hypotheses 2atomslt.b B = Base K
2atomslt.s < ˙ = < K
2atomslt.a A = Atoms K
Assertion 2atlt K HL P A X B P < ˙ X q A q P q < ˙ X

Proof

Step Hyp Ref Expression
1 2atomslt.b B = Base K
2 2atomslt.s < ˙ = < K
3 2atomslt.a A = Atoms K
4 1 3 atbase P A P B
5 eqid K = K
6 eqid join K = join K
7 1 5 2 6 3 hlrelat K HL P B X B P < ˙ X q A P < ˙ P join K q P join K q K X
8 4 7 syl3anl2 K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X
9 simp3l K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X P < ˙ P join K q
10 simp1l1 K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X K HL
11 simp1l2 K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X P A
12 simp2 K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X q A
13 eqid K = K
14 2 6 3 13 atltcvr K HL P A P A q A P < ˙ P join K q P K P join K q
15 10 11 11 12 14 syl13anc K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X P < ˙ P join K q P K P join K q
16 9 15 mpbid K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X P K P join K q
17 6 13 3 atcvr1 K HL P A q A P q P K P join K q
18 10 11 12 17 syl3anc K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X P q P K P join K q
19 16 18 mpbird K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X P q
20 19 necomd K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X q P
21 2 6 3 atlt K HL q A P A q < ˙ q join K P q P
22 10 12 11 21 syl3anc K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X q < ˙ q join K P q P
23 20 22 mpbird K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X q < ˙ q join K P
24 10 hllatd K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X K Lat
25 11 4 syl K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X P B
26 1 3 atbase q A q B
27 26 3ad2ant2 K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X q B
28 1 6 latjcom K Lat P B q B P join K q = q join K P
29 24 25 27 28 syl3anc K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X P join K q = q join K P
30 23 29 breqtrrd K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X q < ˙ P join K q
31 simp3r K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X P join K q K X
32 hlpos K HL K Poset
33 10 32 syl K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X K Poset
34 1 6 latjcl K Lat P B q B P join K q B
35 24 25 27 34 syl3anc K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X P join K q B
36 simp1l3 K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X X B
37 1 5 2 pltletr K Poset q B P join K q B X B q < ˙ P join K q P join K q K X q < ˙ X
38 33 27 35 36 37 syl13anc K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X q < ˙ P join K q P join K q K X q < ˙ X
39 30 31 38 mp2and K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X q < ˙ X
40 20 39 jca K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X q P q < ˙ X
41 40 3exp K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X q P q < ˙ X
42 41 reximdvai K HL P A X B P < ˙ X q A P < ˙ P join K q P join K q K X q A q P q < ˙ X
43 8 42 mpd K HL P A X B P < ˙ X q A q P q < ˙ X