Description: Given an atom less than an element, there is another atom less than the element. (Contributed by NM, 6-May-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2atomslt.b | |
|
2atomslt.s | |
||
2atomslt.a | |
||
Assertion | 2atlt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2atomslt.b | |
|
2 | 2atomslt.s | |
|
3 | 2atomslt.a | |
|
4 | 1 3 | atbase | |
5 | eqid | |
|
6 | eqid | |
|
7 | 1 5 2 6 3 | hlrelat | |
8 | 4 7 | syl3anl2 | |
9 | simp3l | |
|
10 | simp1l1 | |
|
11 | simp1l2 | |
|
12 | simp2 | |
|
13 | eqid | |
|
14 | 2 6 3 13 | atltcvr | |
15 | 10 11 11 12 14 | syl13anc | |
16 | 9 15 | mpbid | |
17 | 6 13 3 | atcvr1 | |
18 | 10 11 12 17 | syl3anc | |
19 | 16 18 | mpbird | |
20 | 19 | necomd | |
21 | 2 6 3 | atlt | |
22 | 10 12 11 21 | syl3anc | |
23 | 20 22 | mpbird | |
24 | 10 | hllatd | |
25 | 11 4 | syl | |
26 | 1 3 | atbase | |
27 | 26 | 3ad2ant2 | |
28 | 1 6 | latjcom | |
29 | 24 25 27 28 | syl3anc | |
30 | 23 29 | breqtrrd | |
31 | simp3r | |
|
32 | hlpos | |
|
33 | 10 32 | syl | |
34 | 1 6 | latjcl | |
35 | 24 25 27 34 | syl3anc | |
36 | simp1l3 | |
|
37 | 1 5 2 | pltletr | |
38 | 33 27 35 36 37 | syl13anc | |
39 | 30 31 38 | mp2and | |
40 | 20 39 | jca | |
41 | 40 | 3exp | |
42 | 41 | reximdvai | |
43 | 8 42 | mpd | |