Metamath Proof Explorer


Theorem 2dim

Description: Generate a height-3 element (2-dimensional plane) from an atom. (Contributed by NM, 3-May-2012)

Ref Expression
Hypotheses 2dim.j ˙=joinK
2dim.c C=K
2dim.a A=AtomsK
Assertion 2dim KHLPAqArAPCP˙qP˙qCP˙q˙r

Proof

Step Hyp Ref Expression
1 2dim.j ˙=joinK
2 2dim.c C=K
3 2dim.a A=AtomsK
4 eqid K=K
5 1 4 3 3dim1 KHLPAqArAsAPq¬rKP˙q¬sKP˙q˙r
6 df-3an Pq¬rKP˙q¬sKP˙q˙rPq¬rKP˙q¬sKP˙q˙r
7 6 rexbii sAPq¬rKP˙q¬sKP˙q˙rsAPq¬rKP˙q¬sKP˙q˙r
8 r19.42v sAPq¬rKP˙q¬sKP˙q˙rPq¬rKP˙qsA¬sKP˙q˙r
9 7 8 bitri sAPq¬rKP˙q¬sKP˙q˙rPq¬rKP˙qsA¬sKP˙q˙r
10 9 simplbi sAPq¬rKP˙q¬sKP˙q˙rPq¬rKP˙q
11 simplll KHLPAqArAKHL
12 hlatl KHLKAtLat
13 11 12 syl KHLPAqArAKAtLat
14 simplr KHLPAqArAqA
15 simpllr KHLPAqArAPA
16 4 3 atncmp KAtLatqAPA¬qKPqP
17 13 14 15 16 syl3anc KHLPAqArA¬qKPqP
18 necom qPPq
19 17 18 bitr2di KHLPAqArAPq¬qKP
20 eqid BaseK=BaseK
21 20 3 atbase PAPBaseK
22 15 21 syl KHLPAqArAPBaseK
23 20 4 1 2 3 cvr1 KHLPBaseKqA¬qKPPCP˙q
24 11 22 14 23 syl3anc KHLPAqArA¬qKPPCP˙q
25 19 24 bitrd KHLPAqArAPqPCP˙q
26 20 1 3 hlatjcl KHLPAqAP˙qBaseK
27 11 15 14 26 syl3anc KHLPAqArAP˙qBaseK
28 simpr KHLPAqArArA
29 20 4 1 2 3 cvr1 KHLP˙qBaseKrA¬rKP˙qP˙qCP˙q˙r
30 11 27 28 29 syl3anc KHLPAqArA¬rKP˙qP˙qCP˙q˙r
31 25 30 anbi12d KHLPAqArAPq¬rKP˙qPCP˙qP˙qCP˙q˙r
32 10 31 imbitrid KHLPAqArAsAPq¬rKP˙q¬sKP˙q˙rPCP˙qP˙qCP˙q˙r
33 32 reximdva KHLPAqArAsAPq¬rKP˙q¬sKP˙q˙rrAPCP˙qP˙qCP˙q˙r
34 33 reximdva KHLPAqArAsAPq¬rKP˙q¬sKP˙q˙rqArAPCP˙qP˙qCP˙q˙r
35 5 34 mpd KHLPAqArAPCP˙qP˙qCP˙q˙r