Database
ELEMENTARY NUMBER THEORY
Elementary properties of divisibility
Bit sequences
2ebits
Next ⟩
bitsinv
Metamath Proof Explorer
Ascii
Unicode
Theorem
2ebits
Description:
The bits of a power of two.
(Contributed by
Mario Carneiro
, 5-Sep-2016)
Ref
Expression
Assertion
2ebits
⊢
N
∈
ℕ
0
→
bits
⁡
2
N
=
N
Proof
Step
Hyp
Ref
Expression
1
2nn
⊢
2
∈
ℕ
2
1
a1i
⊢
N
∈
ℕ
0
→
2
∈
ℕ
3
id
⊢
N
∈
ℕ
0
→
N
∈
ℕ
0
4
2
3
nnexpcld
⊢
N
∈
ℕ
0
→
2
N
∈
ℕ
5
4
nncnd
⊢
N
∈
ℕ
0
→
2
N
∈
ℂ
6
oveq2
⊢
k
=
N
→
2
k
=
2
N
7
6
sumsn
⊢
N
∈
ℕ
0
∧
2
N
∈
ℂ
→
∑
k
∈
N
2
k
=
2
N
8
5
7
mpdan
⊢
N
∈
ℕ
0
→
∑
k
∈
N
2
k
=
2
N
9
8
fveq2d
⊢
N
∈
ℕ
0
→
bits
⁡
∑
k
∈
N
2
k
=
bits
⁡
2
N
10
snssi
⊢
N
∈
ℕ
0
→
N
⊆
ℕ
0
11
snfi
⊢
N
∈
Fin
12
elfpw
⊢
N
∈
𝒫
ℕ
0
∩
Fin
↔
N
⊆
ℕ
0
∧
N
∈
Fin
13
10
11
12
sylanblrc
⊢
N
∈
ℕ
0
→
N
∈
𝒫
ℕ
0
∩
Fin
14
bitsinv2
⊢
N
∈
𝒫
ℕ
0
∩
Fin
→
bits
⁡
∑
k
∈
N
2
k
=
N
15
13
14
syl
⊢
N
∈
ℕ
0
→
bits
⁡
∑
k
∈
N
2
k
=
N
16
9
15
eqtr3d
⊢
N
∈
ℕ
0
→
bits
⁡
2
N
=
N