Step |
Hyp |
Ref |
Expression |
1 |
|
elinel2 |
|
2 |
|
2nn0 |
|
3 |
2
|
a1i |
|
4 |
|
elfpw |
|
5 |
4
|
simplbi |
|
6 |
5
|
sselda |
|
7 |
3 6
|
nn0expcld |
|
8 |
1 7
|
fsumnn0cl |
|
9 |
|
bitsinv1 |
|
10 |
8 9
|
syl |
|
11 |
|
bitsss |
|
12 |
11
|
a1i |
|
13 |
|
bitsfi |
|
14 |
8 13
|
syl |
|
15 |
|
elfpw |
|
16 |
12 14 15
|
sylanbrc |
|
17 |
|
oveq2 |
|
18 |
17
|
cbvsumv |
|
19 |
|
sumeq1 |
|
20 |
18 19
|
eqtrid |
|
21 |
|
eqid |
|
22 |
|
sumex |
|
23 |
20 21 22
|
fvmpt |
|
24 |
16 23
|
syl |
|
25 |
|
sumeq1 |
|
26 |
|
sumex |
|
27 |
25 21 26
|
fvmpt |
|
28 |
10 24 27
|
3eqtr4d |
|
29 |
21
|
ackbijnn |
|
30 |
|
f1of1 |
|
31 |
29 30
|
mp1i |
|
32 |
|
id |
|
33 |
|
f1fveq |
|
34 |
31 16 32 33
|
syl12anc |
|
35 |
28 34
|
mpbid |
|