Metamath Proof Explorer


Theorem 2ebits

Description: The bits of a power of two. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion 2ebits N0bits2N=N

Proof

Step Hyp Ref Expression
1 2nn 2
2 1 a1i N02
3 id N0N0
4 2 3 nnexpcld N02N
5 4 nncnd N02N
6 oveq2 k=N2k=2N
7 6 sumsn N02NkN2k=2N
8 5 7 mpdan N0kN2k=2N
9 8 fveq2d N0bitskN2k=bits2N
10 snssi N0N0
11 snfi NFin
12 elfpw N𝒫0FinN0NFin
13 10 11 12 sylanblrc N0N𝒫0Fin
14 bitsinv2 N𝒫0FinbitskN2k=N
15 13 14 syl N0bitskN2k=N
16 9 15 eqtr3d N0bits2N=N