| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2llnj.l |
|
| 2 |
|
2llnj.j |
|
| 3 |
|
2llnj.n |
|
| 4 |
|
2llnj.p |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
5 2 6 3
|
islln2 |
|
| 8 |
|
simpr |
|
| 9 |
7 8
|
biimtrdi |
|
| 10 |
5 2 6 3
|
islln2 |
|
| 11 |
|
simpr |
|
| 12 |
10 11
|
biimtrdi |
|
| 13 |
9 12
|
anim12d |
|
| 14 |
13
|
imp |
|
| 15 |
14
|
3adantr3 |
|
| 16 |
15
|
3adant3 |
|
| 17 |
|
simp2rr |
|
| 18 |
|
simp3rr |
|
| 19 |
17 18
|
oveq12d |
|
| 20 |
|
simp13 |
|
| 21 |
|
breq1 |
|
| 22 |
|
neeq1 |
|
| 23 |
21 22
|
3anbi13d |
|
| 24 |
|
breq1 |
|
| 25 |
|
neeq2 |
|
| 26 |
24 25
|
3anbi23d |
|
| 27 |
23 26
|
sylan9bb |
|
| 28 |
17 18 27
|
syl2anc |
|
| 29 |
20 28
|
mpbid |
|
| 30 |
|
simp11 |
|
| 31 |
|
simp123 |
|
| 32 |
|
simp2ll |
|
| 33 |
|
simp2lr |
|
| 34 |
|
simp2rl |
|
| 35 |
|
simp3ll |
|
| 36 |
|
simp3lr |
|
| 37 |
|
simp3rl |
|
| 38 |
1 2 6 3 4
|
2llnjaN |
|
| 39 |
38
|
ex |
|
| 40 |
30 31 32 33 34 35 36 37 39
|
syl233anc |
|
| 41 |
29 40
|
mpd |
|
| 42 |
19 41
|
eqtrd |
|
| 43 |
42
|
3exp |
|
| 44 |
43
|
3impib |
|
| 45 |
44
|
expd |
|
| 46 |
45
|
rexlimdvv |
|
| 47 |
46
|
3exp |
|
| 48 |
47
|
rexlimdvv |
|
| 49 |
48
|
impd |
|
| 50 |
16 49
|
mpd |
|