Metamath Proof Explorer


Theorem 2llnmj

Description: The meet of two lattice lines is an atom iff their join is a lattice plane. (Contributed by NM, 27-Jun-2012)

Ref Expression
Hypotheses 2llnmj.j ˙=joinK
2llnmj.m ˙=meetK
2llnmj.a A=AtomsK
2llnmj.n N=LLinesK
2llnmj.p P=LPlanesK
Assertion 2llnmj KHLXNYNX˙YAX˙YP

Proof

Step Hyp Ref Expression
1 2llnmj.j ˙=joinK
2 2llnmj.m ˙=meetK
3 2llnmj.a A=AtomsK
4 2llnmj.n N=LLinesK
5 2llnmj.p P=LPlanesK
6 simp1 KHLXNYNKHL
7 eqid BaseK=BaseK
8 7 4 llnbase XNXBaseK
9 8 3ad2ant2 KHLXNYNXBaseK
10 7 4 llnbase YNYBaseK
11 10 3ad2ant3 KHLXNYNYBaseK
12 eqid K=K
13 7 1 2 12 cvrexch KHLXBaseKYBaseKX˙YKYXKX˙Y
14 6 9 11 13 syl3anc KHLXNYNX˙YKYXKX˙Y
15 simpl1 KHLXNYNX˙YAKHL
16 simpr KHLXNYNX˙YAX˙YA
17 simpl3 KHLXNYNX˙YAYN
18 hllat KHLKLat
19 eqid K=K
20 7 19 2 latmle2 KLatXBaseKYBaseKX˙YKY
21 18 8 10 20 syl3an KHLXNYNX˙YKY
22 21 adantr KHLXNYNX˙YAX˙YKY
23 19 12 3 4 atcvrlln2 KHLX˙YAYNX˙YKYX˙YKY
24 15 16 17 22 23 syl31anc KHLXNYNX˙YAX˙YKY
25 simpl3 KHLXNYNX˙YKYYN
26 7 2 latmcl KLatXBaseKYBaseKX˙YBaseK
27 18 8 10 26 syl3an KHLXNYNX˙YBaseK
28 6 27 11 3jca KHLXNYNKHLX˙YBaseKYBaseK
29 7 12 3 4 atcvrlln KHLX˙YBaseKYBaseKX˙YKYX˙YAYN
30 28 29 sylan KHLXNYNX˙YKYX˙YAYN
31 25 30 mpbird KHLXNYNX˙YKYX˙YA
32 24 31 impbida KHLXNYNX˙YAX˙YKY
33 simpl1 KHLXNYNX˙YPKHL
34 simpl2 KHLXNYNX˙YPXN
35 simpr KHLXNYNX˙YPX˙YP
36 7 19 1 latlej1 KLatXBaseKYBaseKXKX˙Y
37 18 8 10 36 syl3an KHLXNYNXKX˙Y
38 37 adantr KHLXNYNX˙YPXKX˙Y
39 19 12 4 5 llncvrlpln2 KHLXNX˙YPXKX˙YXKX˙Y
40 33 34 35 38 39 syl31anc KHLXNYNX˙YPXKX˙Y
41 simpl2 KHLXNYNXKX˙YXN
42 7 1 latjcl KLatXBaseKYBaseKX˙YBaseK
43 18 8 10 42 syl3an KHLXNYNX˙YBaseK
44 6 9 43 3jca KHLXNYNKHLXBaseKX˙YBaseK
45 7 12 4 5 llncvrlpln KHLXBaseKX˙YBaseKXKX˙YXNX˙YP
46 44 45 sylan KHLXNYNXKX˙YXNX˙YP
47 41 46 mpbid KHLXNYNXKX˙YX˙YP
48 40 47 impbida KHLXNYNX˙YPXKX˙Y
49 14 32 48 3bitr4d KHLXNYNX˙YAX˙YP