| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2nn0ind.1 |
|
| 2 |
|
2nn0ind.2 |
|
| 3 |
|
2nn0ind.3 |
|
| 4 |
|
2nn0ind.4 |
|
| 5 |
|
2nn0ind.5 |
|
| 6 |
|
2nn0ind.6 |
|
| 7 |
|
2nn0ind.7 |
|
| 8 |
|
2nn0ind.8 |
|
| 9 |
|
2nn0ind.9 |
|
| 10 |
|
nn0p1nn |
|
| 11 |
|
oveq1 |
|
| 12 |
11
|
sbceq1d |
|
| 13 |
|
dfsbcq |
|
| 14 |
12 13
|
anbi12d |
|
| 15 |
|
oveq1 |
|
| 16 |
15
|
sbceq1d |
|
| 17 |
|
dfsbcq |
|
| 18 |
16 17
|
anbi12d |
|
| 19 |
|
oveq1 |
|
| 20 |
19
|
sbceq1d |
|
| 21 |
|
dfsbcq |
|
| 22 |
20 21
|
anbi12d |
|
| 23 |
|
oveq1 |
|
| 24 |
23
|
sbceq1d |
|
| 25 |
|
dfsbcq |
|
| 26 |
24 25
|
anbi12d |
|
| 27 |
|
ovex |
|
| 28 |
|
1m1e0 |
|
| 29 |
28
|
eqeq2i |
|
| 30 |
29 4
|
sylbi |
|
| 31 |
27 30
|
sbcie |
|
| 32 |
1 31
|
mpbir |
|
| 33 |
|
1ex |
|
| 34 |
33 5
|
sbcie |
|
| 35 |
2 34
|
mpbir |
|
| 36 |
32 35
|
pm3.2i |
|
| 37 |
|
simprr |
|
| 38 |
|
nncn |
|
| 39 |
|
ax-1cn |
|
| 40 |
|
pncan |
|
| 41 |
38 39 40
|
sylancl |
|
| 42 |
41
|
adantr |
|
| 43 |
42
|
sbceq1d |
|
| 44 |
37 43
|
mpbird |
|
| 45 |
|
ovex |
|
| 46 |
45 6
|
sbcie |
|
| 47 |
|
vex |
|
| 48 |
47 7
|
sbcie |
|
| 49 |
46 48
|
anbi12i |
|
| 50 |
|
ovex |
|
| 51 |
50 8
|
sbcie |
|
| 52 |
3 49 51
|
3imtr4g |
|
| 53 |
52
|
imp |
|
| 54 |
44 53
|
jca |
|
| 55 |
54
|
ex |
|
| 56 |
14 18 22 26 36 55
|
nnind |
|
| 57 |
10 56
|
syl |
|
| 58 |
|
nn0cn |
|
| 59 |
|
pncan |
|
| 60 |
58 39 59
|
sylancl |
|
| 61 |
60
|
sbceq1d |
|
| 62 |
61
|
biimpa |
|
| 63 |
62
|
adantrr |
|
| 64 |
57 63
|
mpdan |
|
| 65 |
9
|
sbcieg |
|
| 66 |
64 65
|
mpbid |
|