Step |
Hyp |
Ref |
Expression |
1 |
|
elfzo1 |
|
2 |
|
nnz |
|
3 |
2
|
3ad2ant1 |
|
4 |
|
nnz |
|
5 |
4
|
3ad2ant2 |
|
6 |
3 5
|
zltlem1d |
|
7 |
|
nnre |
|
8 |
7
|
3ad2ant1 |
|
9 |
8
|
adantr |
|
10 |
|
nnre |
|
11 |
|
1red |
|
12 |
10 11
|
resubcld |
|
13 |
12
|
3ad2ant2 |
|
14 |
13
|
adantr |
|
15 |
|
eluzelre |
|
16 |
15
|
rehalfcld |
|
17 |
16
|
3ad2ant3 |
|
18 |
17
|
adantr |
|
19 |
|
simpr |
|
20 |
|
ceilm1lt |
|
21 |
17 20
|
syl |
|
22 |
21
|
adantr |
|
23 |
9 14 18 19 22
|
lelttrd |
|
24 |
23
|
ex |
|
25 |
|
2re |
|
26 |
25
|
a1i |
|
27 |
|
2pos |
|
28 |
27
|
a1i |
|
29 |
|
ltmul2 |
|
30 |
8 17 26 28 29
|
syl112anc |
|
31 |
|
eluzelcn |
|
32 |
31
|
3ad2ant3 |
|
33 |
|
2cnd |
|
34 |
|
2ne0 |
|
35 |
34
|
a1i |
|
36 |
32 33 35
|
divcan2d |
|
37 |
36
|
breq2d |
|
38 |
37
|
biimpd |
|
39 |
30 38
|
sylbid |
|
40 |
24 39
|
syld |
|
41 |
6 40
|
sylbid |
|
42 |
41
|
3exp |
|
43 |
42
|
com34 |
|
44 |
43
|
3imp |
|
45 |
1 44
|
sylbi |
|
46 |
45
|
impcom |
|