Metamath Proof Explorer


Theorem 2wspmdisj

Description: The sets of paths of length 2 with a given vertex in the middle are distinct for different vertices in the middle. (Contributed by Alexander van der Vekens, 11-Mar-2018) (Revised by AV, 18-May-2021) (Proof shortened by AV, 10-Jan-2022)

Ref Expression
Hypotheses frgrhash2wsp.v V=VtxG
fusgreg2wsp.m M=aVw2WSPathsNG|w1=a
Assertion 2wspmdisj DisjxVMx

Proof

Step Hyp Ref Expression
1 frgrhash2wsp.v V=VtxG
2 fusgreg2wsp.m M=aVw2WSPathsNG|w1=a
3 orc x=yx=yMxMy=
4 3 a1d x=yxVyVx=yMxMy=
5 1 2 fusgreg2wsplem yVtMyt2WSPathsNGt1=y
6 5 adantl xVyVtMyt2WSPathsNGt1=y
7 6 adantr xVyVtMxtMyt2WSPathsNGt1=y
8 1 2 fusgreg2wsplem xVtMxt2WSPathsNGt1=x
9 eqtr2 t1=xt1=yx=y
10 9 expcom t1=yt1=xx=y
11 10 adantl t2WSPathsNGt1=yt1=xx=y
12 11 com12 t1=xt2WSPathsNGt1=yx=y
13 12 adantl t2WSPathsNGt1=xt2WSPathsNGt1=yx=y
14 8 13 syl6bi xVtMxt2WSPathsNGt1=yx=y
15 14 adantr xVyVtMxt2WSPathsNGt1=yx=y
16 15 imp xVyVtMxt2WSPathsNGt1=yx=y
17 7 16 sylbid xVyVtMxtMyx=y
18 17 con3d xVyVtMx¬x=y¬tMy
19 18 impancom xVyV¬x=ytMx¬tMy
20 19 ralrimiv xVyV¬x=ytMx¬tMy
21 disj MxMy=tMx¬tMy
22 20 21 sylibr xVyV¬x=yMxMy=
23 22 olcd xVyV¬x=yx=yMxMy=
24 23 expcom ¬x=yxVyVx=yMxMy=
25 4 24 pm2.61i xVyVx=yMxMy=
26 25 rgen2 xVyVx=yMxMy=
27 fveq2 x=yMx=My
28 27 disjor DisjxVMxxVyVx=yMxMy=
29 26 28 mpbir DisjxVMx