Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Rings (extension)
The non-unital ring of even integers
2zrng0
Next ⟩
2zrngamgm
Metamath Proof Explorer
Ascii
Unicode
Theorem
2zrng0
Description:
The additive identity of R is the complex number 0.
(Contributed by
AV
, 11-Feb-2020)
Ref
Expression
Hypotheses
2zrng.e
⊢
E
=
z
∈
ℤ
|
∃
x
∈
ℤ
z
=
2
⁢
x
2zrngbas.r
⊢
R
=
ℂ
fld
↾
𝑠
E
Assertion
2zrng0
⊢
0
=
0
R
Proof
Step
Hyp
Ref
Expression
1
2zrng.e
⊢
E
=
z
∈
ℤ
|
∃
x
∈
ℤ
z
=
2
⁢
x
2
2zrngbas.r
⊢
R
=
ℂ
fld
↾
𝑠
E
3
cncrng
⊢
ℂ
fld
∈
CRing
4
crngring
⊢
ℂ
fld
∈
CRing
→
ℂ
fld
∈
Ring
5
ringmnd
⊢
ℂ
fld
∈
Ring
→
ℂ
fld
∈
Mnd
6
3
4
5
mp2b
⊢
ℂ
fld
∈
Mnd
7
1
0even
⊢
0
∈
E
8
ssrab2
⊢
z
∈
ℤ
|
∃
x
∈
ℤ
z
=
2
⁢
x
⊆
ℤ
9
1
8
eqsstri
⊢
E
⊆
ℤ
10
zsscn
⊢
ℤ
⊆
ℂ
11
9
10
sstri
⊢
E
⊆
ℂ
12
cnfldbas
⊢
ℂ
=
Base
ℂ
fld
13
cnfld0
⊢
0
=
0
ℂ
fld
14
2
12
13
ress0g
⊢
ℂ
fld
∈
Mnd
∧
0
∈
E
∧
E
⊆
ℂ
→
0
=
0
R
15
6
7
11
14
mp3an
⊢
0
=
0
R