Metamath Proof Explorer


Theorem 2zrng0

Description: The additive identity of R is the complex number 0. (Contributed by AV, 11-Feb-2020)

Ref Expression
Hypotheses 2zrng.e E = z | x z = 2 x
2zrngbas.r R = fld 𝑠 E
Assertion 2zrng0 0 = 0 R

Proof

Step Hyp Ref Expression
1 2zrng.e E = z | x z = 2 x
2 2zrngbas.r R = fld 𝑠 E
3 cncrng fld CRing
4 crngring fld CRing fld Ring
5 ringmnd fld Ring fld Mnd
6 3 4 5 mp2b fld Mnd
7 1 0even 0 E
8 ssrab2 z | x z = 2 x
9 1 8 eqsstri E
10 zsscn
11 9 10 sstri E
12 cnfldbas = Base fld
13 cnfld0 0 = 0 fld
14 2 12 13 ress0g fld Mnd 0 E E 0 = 0 R
15 6 7 11 14 mp3an 0 = 0 R