Metamath Proof Explorer


Theorem 2zrng0

Description: The additive identity of R is the complex number 0. (Contributed by AV, 11-Feb-2020)

Ref Expression
Hypotheses 2zrng.e E=z|xz=2x
2zrngbas.r R=fld𝑠E
Assertion 2zrng0 0=0R

Proof

Step Hyp Ref Expression
1 2zrng.e E=z|xz=2x
2 2zrngbas.r R=fld𝑠E
3 cncrng fldCRing
4 crngring fldCRingfldRing
5 ringmnd fldRingfldMnd
6 3 4 5 mp2b fldMnd
7 1 0even 0E
8 ssrab2 z|xz=2x
9 1 8 eqsstri E
10 zsscn
11 9 10 sstri E
12 cnfldbas =Basefld
13 cnfld0 0=0fld
14 2 12 13 ress0g fldMnd0EE0=0R
15 6 7 11 14 mp3an 0=0R