Metamath Proof Explorer


Theorem 3atlem2

Description: Lemma for 3at . (Contributed by NM, 22-Jun-2012)

Ref Expression
Hypotheses 3at.l ˙=K
3at.j ˙=joinK
3at.a A=AtomsK
Assertion 3atlem2 KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙R=S˙T˙U

Proof

Step Hyp Ref Expression
1 3at.l ˙=K
2 3at.j ˙=joinK
3 3at.a A=AtomsK
4 simp3 KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙R˙S˙T˙U
5 simp11 KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UKHL
6 5 hllatd KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UKLat
7 simp121 KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UPA
8 simp122 KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UQA
9 eqid BaseK=BaseK
10 9 2 3 hlatjcl KHLPAQAP˙QBaseK
11 5 7 8 10 syl3anc KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙QBaseK
12 simp123 KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙URA
13 9 3 atbase RARBaseK
14 12 13 syl KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙URBaseK
15 simp131 KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙USA
16 simp132 KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UTA
17 9 2 3 hlatjcl KHLSATAS˙TBaseK
18 5 15 16 17 syl3anc KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙US˙TBaseK
19 simp133 KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UUA
20 9 3 atbase UAUBaseK
21 19 20 syl KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UUBaseK
22 9 2 latjcl KLatS˙TBaseKUBaseKS˙T˙UBaseK
23 6 18 21 22 syl3anc KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙US˙T˙UBaseK
24 9 1 2 latjle12 KLatP˙QBaseKRBaseKS˙T˙UBaseKP˙Q˙S˙T˙UR˙S˙T˙UP˙Q˙R˙S˙T˙U
25 6 11 14 23 24 syl13anc KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙S˙T˙UR˙S˙T˙UP˙Q˙R˙S˙T˙U
26 4 25 mpbird KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙S˙T˙UR˙S˙T˙U
27 26 simprd KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UR˙S˙T˙U
28 2 3 hlatjass KHLSATAUAS˙T˙U=S˙T˙U
29 5 15 16 19 28 syl13anc KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙US˙T˙U=S˙T˙U
30 simp22r KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙T˙U
31 simp22l KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UPU
32 1 2 3 hlatexchb2 KHLPATAUAPUP˙T˙UP˙U=T˙U
33 5 7 16 19 31 32 syl131anc KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙T˙UP˙U=T˙U
34 30 33 mpbid KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙U=T˙U
35 34 oveq2d KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙US˙P˙U=S˙T˙U
36 29 35 eqtr4d KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙US˙T˙U=S˙P˙U
37 2 3 hlatjass KHLPAQAUAP˙Q˙U=P˙Q˙U
38 5 7 8 19 37 syl13anc KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙U=P˙Q˙U
39 2 3 hlatj12 KHLPAQAUAP˙Q˙U=Q˙P˙U
40 5 7 8 19 39 syl13anc KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙U=Q˙P˙U
41 2 3 hlatj32 KHLPAQARAP˙Q˙R=P˙R˙Q
42 5 7 8 12 41 syl13anc KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙R=P˙R˙Q
43 4 42 29 3brtr3d KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙R˙Q˙S˙T˙U
44 9 2 3 hlatjcl KHLPARAP˙RBaseK
45 5 7 12 44 syl3anc KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙RBaseK
46 9 3 atbase QAQBaseK
47 8 46 syl KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UQBaseK
48 9 3 atbase SASBaseK
49 15 48 syl KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙USBaseK
50 9 2 3 hlatjcl KHLTAUAT˙UBaseK
51 5 16 19 50 syl3anc KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UT˙UBaseK
52 9 2 latjcl KLatSBaseKT˙UBaseKS˙T˙UBaseK
53 6 49 51 52 syl3anc KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙US˙T˙UBaseK
54 9 1 2 latjle12 KLatP˙RBaseKQBaseKS˙T˙UBaseKP˙R˙S˙T˙UQ˙S˙T˙UP˙R˙Q˙S˙T˙U
55 6 45 47 53 54 syl13anc KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙R˙S˙T˙UQ˙S˙T˙UP˙R˙Q˙S˙T˙U
56 43 55 mpbird KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙R˙S˙T˙UQ˙S˙T˙U
57 56 simprd KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UQ˙S˙T˙U
58 57 35 breqtrrd KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UQ˙S˙P˙U
59 9 2 3 hlatjcl KHLPAUAP˙UBaseK
60 5 7 19 59 syl3anc KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙UBaseK
61 simp23 KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙U¬Q˙P˙U
62 9 1 2 3 hlexchb2 KHLQASAP˙UBaseK¬Q˙P˙UQ˙S˙P˙UQ˙P˙U=S˙P˙U
63 5 8 15 60 61 62 syl131anc KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UQ˙S˙P˙UQ˙P˙U=S˙P˙U
64 58 63 mpbid KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UQ˙P˙U=S˙P˙U
65 38 40 64 3eqtrd KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙U=S˙P˙U
66 36 65 eqtr4d KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙US˙T˙U=P˙Q˙U
67 27 66 breqtrd KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UR˙P˙Q˙U
68 simp21 KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙U¬R˙P˙Q
69 9 1 2 3 hlexchb1 KHLRAUAP˙QBaseK¬R˙P˙QR˙P˙Q˙UP˙Q˙R=P˙Q˙U
70 5 12 19 11 68 69 syl131anc KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UR˙P˙Q˙UP˙Q˙R=P˙Q˙U
71 67 70 mpbid KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙R=P˙Q˙U
72 71 66 eqtr4d KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙R=S˙T˙U