Metamath Proof Explorer


Theorem 3wlkdlem6

Description: Lemma 6 for 3wlkd . (Contributed by AV, 7-Feb-2021)

Ref Expression
Hypotheses 3wlkd.p P=⟨“ABCD”⟩
3wlkd.f F=⟨“JKL”⟩
3wlkd.s φAVBVCVDV
3wlkd.n φABACBCBDCD
3wlkd.e φABIJBCIKCDIL
Assertion 3wlkdlem6 φAIJBIKCIL

Proof

Step Hyp Ref Expression
1 3wlkd.p P=⟨“ABCD”⟩
2 3wlkd.f F=⟨“JKL”⟩
3 3wlkd.s φAVBVCVDV
4 3wlkd.n φABACBCBDCD
5 3wlkd.e φABIJBCIKCDIL
6 1 2 3 3wlkdlem3 φP0=AP1=BP2=CP3=D
7 preq12 P0=AP1=BP0P1=AB
8 7 sseq1d P0=AP1=BP0P1IJABIJ
9 8 adantr P0=AP1=BP2=CP3=DP0P1IJABIJ
10 preq12 P1=BP2=CP1P2=BC
11 10 ad2ant2lr P0=AP1=BP2=CP3=DP1P2=BC
12 11 sseq1d P0=AP1=BP2=CP3=DP1P2IKBCIK
13 preq12 P2=CP3=DP2P3=CD
14 13 sseq1d P2=CP3=DP2P3ILCDIL
15 14 adantl P0=AP1=BP2=CP3=DP2P3ILCDIL
16 9 12 15 3anbi123d P0=AP1=BP2=CP3=DP0P1IJP1P2IKP2P3ILABIJBCIKCDIL
17 5 16 syl5ibrcom φP0=AP1=BP2=CP3=DP0P1IJP1P2IKP2P3IL
18 6 17 mpd φP0P1IJP1P2IKP2P3IL
19 fvex P0V
20 fvex P1V
21 19 20 prss P0IJP1IJP0P1IJ
22 simpl P0IJP1IJP0IJ
23 21 22 sylbir P0P1IJP0IJ
24 fvex P2V
25 20 24 prss P1IKP2IKP1P2IK
26 simpl P1IKP2IKP1IK
27 25 26 sylbir P1P2IKP1IK
28 fvex P3V
29 24 28 prss P2ILP3ILP2P3IL
30 simpl P2ILP3ILP2IL
31 29 30 sylbir P2P3ILP2IL
32 23 27 31 3anim123i P0P1IJP1P2IKP2P3ILP0IJP1IKP2IL
33 18 32 syl φP0IJP1IKP2IL
34 eleq1 P0=AP0IJAIJ
35 34 adantr P0=AP1=BP0IJAIJ
36 35 adantr P0=AP1=BP2=CP3=DP0IJAIJ
37 eleq1 P1=BP1IKBIK
38 37 adantl P0=AP1=BP1IKBIK
39 38 adantr P0=AP1=BP2=CP3=DP1IKBIK
40 eleq1 P2=CP2ILCIL
41 40 adantr P2=CP3=DP2ILCIL
42 41 adantl P0=AP1=BP2=CP3=DP2ILCIL
43 36 39 42 3anbi123d P0=AP1=BP2=CP3=DP0IJP1IKP2ILAIJBIKCIL
44 43 bicomd P0=AP1=BP2=CP3=DAIJBIKCILP0IJP1IKP2IL
45 6 44 syl φAIJBIKCILP0IJP1IKP2IL
46 33 45 mpbird φAIJBIKCIL