Description: Lemma 6 for 3wlkd . (Contributed by AV, 7-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 3wlkd.p | |
|
3wlkd.f | |
||
3wlkd.s | |
||
3wlkd.n | |
||
3wlkd.e | |
||
Assertion | 3wlkdlem6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3wlkd.p | |
|
2 | 3wlkd.f | |
|
3 | 3wlkd.s | |
|
4 | 3wlkd.n | |
|
5 | 3wlkd.e | |
|
6 | 1 2 3 | 3wlkdlem3 | |
7 | preq12 | |
|
8 | 7 | sseq1d | |
9 | 8 | adantr | |
10 | preq12 | |
|
11 | 10 | ad2ant2lr | |
12 | 11 | sseq1d | |
13 | preq12 | |
|
14 | 13 | sseq1d | |
15 | 14 | adantl | |
16 | 9 12 15 | 3anbi123d | |
17 | 5 16 | syl5ibrcom | |
18 | 6 17 | mpd | |
19 | fvex | |
|
20 | fvex | |
|
21 | 19 20 | prss | |
22 | simpl | |
|
23 | 21 22 | sylbir | |
24 | fvex | |
|
25 | 20 24 | prss | |
26 | simpl | |
|
27 | 25 26 | sylbir | |
28 | fvex | |
|
29 | 24 28 | prss | |
30 | simpl | |
|
31 | 29 30 | sylbir | |
32 | 23 27 31 | 3anim123i | |
33 | 18 32 | syl | |
34 | eleq1 | |
|
35 | 34 | adantr | |
36 | 35 | adantr | |
37 | eleq1 | |
|
38 | 37 | adantl | |
39 | 38 | adantr | |
40 | eleq1 | |
|
41 | 40 | adantr | |
42 | 41 | adantl | |
43 | 36 39 42 | 3anbi123d | |
44 | 43 | bicomd | |
45 | 6 44 | syl | |
46 | 33 45 | mpbird | |