Metamath Proof Explorer


Theorem 3wlkond

Description: A walk of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 8-Feb-2021) (Revised by AV, 24-Mar-2021)

Ref Expression
Hypotheses 3wlkd.p P=⟨“ABCD”⟩
3wlkd.f F=⟨“JKL”⟩
3wlkd.s φAVBVCVDV
3wlkd.n φABACBCBDCD
3wlkd.e φABIJBCIKCDIL
3wlkd.v V=VtxG
3wlkd.i I=iEdgG
Assertion 3wlkond φFAWalksOnGDP

Proof

Step Hyp Ref Expression
1 3wlkd.p P=⟨“ABCD”⟩
2 3wlkd.f F=⟨“JKL”⟩
3 3wlkd.s φAVBVCVDV
4 3wlkd.n φABACBCBDCD
5 3wlkd.e φABIJBCIKCDIL
6 3wlkd.v V=VtxG
7 3wlkd.i I=iEdgG
8 1 2 3 4 5 6 7 3wlkd φFWalksGP
9 8 wlkonwlk1l φFP0WalksOnGlastSPP
10 1 2 3 3wlkdlem3 φP0=AP1=BP2=CP3=D
11 simpll P0=AP1=BP2=CP3=DP0=A
12 11 eqcomd P0=AP1=BP2=CP3=DA=P0
13 10 12 syl φA=P0
14 1 fveq2i lastSP=lastS⟨“ABCD”⟩
15 fvex P3V
16 eleq1 P3=DP3VDV
17 15 16 mpbii P3=DDV
18 lsws4 DVlastS⟨“ABCD”⟩=D
19 17 18 syl P3=DlastS⟨“ABCD”⟩=D
20 14 19 eqtr2id P3=DD=lastSP
21 20 ad2antll P0=AP1=BP2=CP3=DD=lastSP
22 10 21 syl φD=lastSP
23 13 22 oveq12d φAWalksOnGD=P0WalksOnGlastSP
24 23 breqd φFAWalksOnGDPFP0WalksOnGlastSPP
25 9 24 mpbird φFAWalksOnGDP