Metamath Proof Explorer


Theorem 4atlem3a

Description: Lemma for 4at . Break inequality into 3 cases. (Contributed by NM, 9-Jul-2012)

Ref Expression
Hypotheses 4at.l ˙=K
4at.j ˙=joinK
4at.a A=AtomsK
Assertion 4atlem3a KHLPAQARASAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙R¬Q˙P˙U˙V¬R˙P˙U˙V¬S˙P˙U˙V

Proof

Step Hyp Ref Expression
1 4at.l ˙=K
2 4at.j ˙=joinK
3 4at.a A=AtomsK
4 simpl1 KHLPAQARASAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RKHLPAQA
5 simpl2l KHLPAQARASAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RRA
6 simpl2r KHLPAQARASAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RSA
7 simpl12 KHLPAQARASAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RPA
8 5 6 7 3jca KHLPAQARASAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RRASAPA
9 simpl3 KHLPAQARASAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RUAVA
10 simpr KHLPAQARASAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RPQ¬R˙P˙Q¬S˙P˙Q˙R
11 1 2 3 4atlem3 KHLPAQARASAPAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙P˙U˙V¬Q˙P˙U˙V¬R˙P˙U˙V¬S˙P˙U˙V
12 4 8 9 10 11 syl31anc KHLPAQARASAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙P˙U˙V¬Q˙P˙U˙V¬R˙P˙U˙V¬S˙P˙U˙V
13 simpl11 KHLPAQARASAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RKHL
14 13 hllatd KHLPAQARASAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RKLat
15 eqid BaseK=BaseK
16 15 3 atbase PAPBaseK
17 7 16 syl KHLPAQARASAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RPBaseK
18 simpl3l KHLPAQARASAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RUA
19 simpl3r KHLPAQARASAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RVA
20 15 2 3 hlatjcl KHLUAVAU˙VBaseK
21 13 18 19 20 syl3anc KHLPAQARASAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RU˙VBaseK
22 15 1 2 latlej1 KLatPBaseKU˙VBaseKP˙P˙U˙V
23 14 17 21 22 syl3anc KHLPAQARASAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙P˙U˙V
24 15 3 atbase UAUBaseK
25 18 24 syl KHLPAQARASAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RUBaseK
26 15 3 atbase VAVBaseK
27 19 26 syl KHLPAQARASAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RVBaseK
28 15 2 latjass KLatPBaseKUBaseKVBaseKP˙U˙V=P˙U˙V
29 14 17 25 27 28 syl13anc KHLPAQARASAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙U˙V=P˙U˙V
30 23 29 breqtrrd KHLPAQARASAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙P˙U˙V
31 biortn P˙P˙U˙V¬Q˙P˙U˙V¬P˙P˙U˙V¬Q˙P˙U˙V
32 30 31 syl KHLPAQARASAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙R¬Q˙P˙U˙V¬P˙P˙U˙V¬Q˙P˙U˙V
33 32 orbi1d KHLPAQARASAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙R¬Q˙P˙U˙V¬R˙P˙U˙V¬S˙P˙U˙V¬P˙P˙U˙V¬Q˙P˙U˙V¬R˙P˙U˙V¬S˙P˙U˙V
34 12 33 mpbird KHLPAQARASAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙R¬Q˙P˙U˙V¬R˙P˙U˙V¬S˙P˙U˙V
35 3orass ¬Q˙P˙U˙V¬R˙P˙U˙V¬S˙P˙U˙V¬Q˙P˙U˙V¬R˙P˙U˙V¬S˙P˙U˙V
36 34 35 sylibr KHLPAQARASAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙R¬Q˙P˙U˙V¬R˙P˙U˙V¬S˙P˙U˙V