Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
|
0nn0 |
|
3 |
|
elnn0uz |
|
4 |
2 3
|
mpbi |
|
5 |
|
3nn0 |
|
6 |
|
elnn0uz |
|
7 |
5 6
|
mpbi |
|
8 |
|
uzss |
|
9 |
7 8
|
ax-mp |
|
10 |
9
|
sseli |
|
11 |
|
eluzfz |
|
12 |
4 10 11
|
sylancr |
|
13 |
12
|
adantr |
|
14 |
1 13
|
ffvelrnd |
|
15 |
|
clel5 |
|
16 |
14 15
|
sylib |
|
17 |
|
1eluzge0 |
|
18 |
|
1z |
|
19 |
|
3z |
|
20 |
|
1le3 |
|
21 |
|
eluz2 |
|
22 |
18 19 20 21
|
mpbir3an |
|
23 |
|
uzss |
|
24 |
22 23
|
ax-mp |
|
25 |
24
|
sseli |
|
26 |
|
eluzfz |
|
27 |
17 25 26
|
sylancr |
|
28 |
27
|
adantr |
|
29 |
1 28
|
ffvelrnd |
|
30 |
|
clel5 |
|
31 |
29 30
|
sylib |
|
32 |
16 31
|
jca |
|
33 |
|
2eluzge0 |
|
34 |
|
uzuzle23 |
|
35 |
|
eluzfz |
|
36 |
33 34 35
|
sylancr |
|
37 |
36
|
adantr |
|
38 |
1 37
|
ffvelrnd |
|
39 |
|
clel5 |
|
40 |
38 39
|
sylib |
|
41 |
|
eluzfz |
|
42 |
7 41
|
mpan |
|
43 |
42
|
adantr |
|
44 |
1 43
|
ffvelrnd |
|
45 |
|
clel5 |
|
46 |
44 45
|
sylib |
|
47 |
32 40 46
|
jca32 |
|
48 |
|
r19.42v |
|
49 |
|
r19.42v |
|
50 |
49
|
anbi2i |
|
51 |
48 50
|
bitri |
|
52 |
51
|
rexbii |
|
53 |
52
|
2rexbii |
|
54 |
|
r19.42v |
|
55 |
|
r19.41v |
|
56 |
55
|
anbi2i |
|
57 |
54 56
|
bitri |
|
58 |
57
|
2rexbii |
|
59 |
|
r19.41v |
|
60 |
|
r19.42v |
|
61 |
60
|
anbi1i |
|
62 |
59 61
|
bitri |
|
63 |
62
|
rexbii |
|
64 |
|
r19.41v |
|
65 |
|
r19.41v |
|
66 |
65
|
anbi1i |
|
67 |
63 64 66
|
3bitri |
|
68 |
53 58 67
|
3bitri |
|
69 |
47 68
|
sylibr |
|