Metamath Proof Explorer


Theorem 4sqlem9

Description: Lemma for 4sq . (Contributed by Mario Carneiro, 15-Jul-2014)

Ref Expression
Hypotheses 4sqlem5.2 φA
4sqlem5.3 φM
4sqlem5.4 B=A+M2modMM2
4sqlem9.5 φψB2=0
Assertion 4sqlem9 φψM2A2

Proof

Step Hyp Ref Expression
1 4sqlem5.2 φA
2 4sqlem5.3 φM
3 4sqlem5.4 B=A+M2modMM2
4 4sqlem9.5 φψB2=0
5 1 2 3 4sqlem5 φBABM
6 5 simpld φB
7 6 zcnd φB
8 sqeq0 BB2=0B=0
9 7 8 syl φB2=0B=0
10 9 biimpa φB2=0B=0
11 4 10 syldan φψB=0
12 11 oveq2d φψAB=A0
13 1 adantr φψA
14 13 zcnd φψA
15 14 subid1d φψA0=A
16 12 15 eqtrd φψAB=A
17 16 oveq1d φψABM=AM
18 5 simprd φABM
19 18 adantr φψABM
20 17 19 eqeltrrd φψAM
21 2 nnzd φM
22 2 nnne0d φM0
23 dvdsval2 MM0AMAAM
24 21 22 1 23 syl3anc φMAAM
25 24 adantr φψMAAM
26 20 25 mpbird φψMA
27 dvdssq MAMAM2A2
28 21 13 27 syl2an2r φψMAM2A2
29 26 28 mpbid φψM2A2