Description: Lemma for 4sq . (Contributed by Mario Carneiro, 15-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 4sqlem5.2 | |
|
4sqlem5.3 | |
||
4sqlem5.4 | |
||
4sqlem9.5 | |
||
Assertion | 4sqlem9 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sqlem5.2 | |
|
2 | 4sqlem5.3 | |
|
3 | 4sqlem5.4 | |
|
4 | 4sqlem9.5 | |
|
5 | 1 2 3 | 4sqlem5 | |
6 | 5 | simpld | |
7 | 6 | zcnd | |
8 | sqeq0 | |
|
9 | 7 8 | syl | |
10 | 9 | biimpa | |
11 | 4 10 | syldan | |
12 | 11 | oveq2d | |
13 | 1 | adantr | |
14 | 13 | zcnd | |
15 | 14 | subid1d | |
16 | 12 15 | eqtrd | |
17 | 16 | oveq1d | |
18 | 5 | simprd | |
19 | 18 | adantr | |
20 | 17 19 | eqeltrrd | |
21 | 2 | nnzd | |
22 | 2 | nnne0d | |
23 | dvdsval2 | |
|
24 | 21 22 1 23 | syl3anc | |
25 | 24 | adantr | |
26 | 20 25 | mpbird | |
27 | dvdssq | |
|
28 | 21 13 27 | syl2an2r | |
29 | 26 28 | mpbid | |