Metamath Proof Explorer


Theorem 9fppr8

Description: 9 is the (smallest) Fermat pseudoprime to the base 8. (Contributed by AV, 2-Jun-2023)

Ref Expression
Assertion 9fppr8 9 FPPr 8

Proof

Step Hyp Ref Expression
1 8nn 8
2 4z 4
3 9nn 9
4 3 nnzi 9
5 4re 4
6 9re 9
7 4lt9 4 < 9
8 5 6 7 ltleii 4 9
9 eluz2 9 4 4 9 4 9
10 2 4 8 9 mpbir3an 9 4
11 2z 2
12 3z 3
13 2re 2
14 3re 3
15 2lt3 2 < 3
16 13 14 15 ltleii 2 3
17 eluz2 3 2 2 3 2 3
18 11 12 16 17 mpbir3an 3 2
19 nprm 3 2 3 2 ¬ 3 3
20 18 18 19 mp2an ¬ 3 3
21 df-nel 9 ¬ 9
22 3t3e9 3 3 = 9
23 22 eqcomi 9 = 3 3
24 23 eleq1i 9 3 3
25 21 24 xchbinx 9 ¬ 3 3
26 20 25 mpbir 9
27 9m1e8 9 1 = 8
28 27 oveq2i 8 9 1 = 8 8
29 28 oveq1i 8 9 1 mod 9 = 8 8 mod 9
30 8exp8mod9 8 8 mod 9 = 1
31 29 30 eqtri 8 9 1 mod 9 = 1
32 10 26 31 3pm3.2i 9 4 9 8 9 1 mod 9 = 1
33 fpprel 8 9 FPPr 8 9 4 9 8 9 1 mod 9 = 1
34 32 33 mpbiri 8 9 FPPr 8
35 1 34 ax-mp 9 FPPr 8