Metamath Proof Explorer


Theorem 9fppr8

Description: 9 is the (smallest) Fermat pseudoprime to the base 8. (Contributed by AV, 2-Jun-2023)

Ref Expression
Assertion 9fppr8 9FPPr8

Proof

Step Hyp Ref Expression
1 8nn 8
2 4z 4
3 9nn 9
4 3 nnzi 9
5 4re 4
6 9re 9
7 4lt9 4<9
8 5 6 7 ltleii 49
9 eluz2 944949
10 2 4 8 9 mpbir3an 94
11 2z 2
12 3z 3
13 2re 2
14 3re 3
15 2lt3 2<3
16 13 14 15 ltleii 23
17 eluz2 322323
18 11 12 16 17 mpbir3an 32
19 nprm 3232¬33
20 18 18 19 mp2an ¬33
21 df-nel 9¬9
22 3t3e9 33=9
23 22 eqcomi 9=33
24 23 eleq1i 933
25 21 24 xchbinx 9¬33
26 20 25 mpbir 9
27 9m1e8 91=8
28 27 oveq2i 891=88
29 28 oveq1i 891mod9=88mod9
30 8exp8mod9 88mod9=1
31 29 30 eqtri 891mod9=1
32 10 26 31 3pm3.2i 949891mod9=1
33 fpprel 89FPPr8949891mod9=1
34 32 33 mpbiri 89FPPr8
35 1 34 ax-mp 9FPPr8