Metamath Proof Explorer


Theorem abelthlem7a

Description: Lemma for abelth . (Contributed by Mario Carneiro, 8-May-2015)

Ref Expression
Hypotheses abelth.1 φA:0
abelth.2 φseq0+Adom
abelth.3 φM
abelth.4 φ0M
abelth.5 S=z|1zM1z
abelth.6 F=xSn0Anxn
abelth.7 φseq0+A0
abelthlem6.1 φXS1
Assertion abelthlem7a φX1XM1X

Proof

Step Hyp Ref Expression
1 abelth.1 φA:0
2 abelth.2 φseq0+Adom
3 abelth.3 φM
4 abelth.4 φ0M
5 abelth.5 S=z|1zM1z
6 abelth.6 F=xSn0Anxn
7 abelth.7 φseq0+A0
8 abelthlem6.1 φXS1
9 8 eldifad φXS
10 oveq2 z=X1z=1X
11 10 fveq2d z=X1z=1X
12 fveq2 z=Xz=X
13 12 oveq2d z=X1z=1X
14 13 oveq2d z=XM1z=M1X
15 11 14 breq12d z=X1zM1z1XM1X
16 15 5 elrab2 XSX1XM1X
17 9 16 sylib φX1XM1X