Metamath Proof Explorer


Theorem ablpnpcan

Description: Cancellation law for mixed addition and subtraction. ( pnpcan analog.) (Contributed by NM, 29-May-2015)

Ref Expression
Hypotheses ablsubadd.b B = Base G
ablsubadd.p + ˙ = + G
ablsubadd.m - ˙ = - G
ablsubsub.g φ G Abel
ablsubsub.x φ X B
ablsubsub.y φ Y B
ablsubsub.z φ Z B
ablpnpcan.g φ G Abel
ablpnpcan.x φ X B
ablpnpcan.y φ Y B
ablpnpcan.z φ Z B
Assertion ablpnpcan φ X + ˙ Y - ˙ X + ˙ Z = Y - ˙ Z

Proof

Step Hyp Ref Expression
1 ablsubadd.b B = Base G
2 ablsubadd.p + ˙ = + G
3 ablsubadd.m - ˙ = - G
4 ablsubsub.g φ G Abel
5 ablsubsub.x φ X B
6 ablsubsub.y φ Y B
7 ablsubsub.z φ Z B
8 ablpnpcan.g φ G Abel
9 ablpnpcan.x φ X B
10 ablpnpcan.y φ Y B
11 ablpnpcan.z φ Z B
12 1 2 3 ablsub4 G Abel X B Y B X B Z B X + ˙ Y - ˙ X + ˙ Z = X - ˙ X + ˙ Y - ˙ Z
13 4 5 6 5 7 12 syl122anc φ X + ˙ Y - ˙ X + ˙ Z = X - ˙ X + ˙ Y - ˙ Z
14 ablgrp G Abel G Grp
15 4 14 syl φ G Grp
16 eqid 0 G = 0 G
17 1 16 3 grpsubid G Grp X B X - ˙ X = 0 G
18 15 5 17 syl2anc φ X - ˙ X = 0 G
19 18 oveq1d φ X - ˙ X + ˙ Y - ˙ Z = 0 G + ˙ Y - ˙ Z
20 1 3 grpsubcl G Grp Y B Z B Y - ˙ Z B
21 15 6 7 20 syl3anc φ Y - ˙ Z B
22 1 2 16 grplid G Grp Y - ˙ Z B 0 G + ˙ Y - ˙ Z = Y - ˙ Z
23 15 21 22 syl2anc φ 0 G + ˙ Y - ˙ Z = Y - ˙ Z
24 13 19 23 3eqtrd φ X + ˙ Y - ˙ X + ˙ Z = Y - ˙ Z