Metamath Proof Explorer


Theorem ablpnpcan

Description: Cancellation law for mixed addition and subtraction. ( pnpcan analog.) (Contributed by NM, 29-May-2015)

Ref Expression
Hypotheses ablsubadd.b B=BaseG
ablsubadd.p +˙=+G
ablsubadd.m -˙=-G
ablsubsub.g φGAbel
ablsubsub.x φXB
ablsubsub.y φYB
ablsubsub.z φZB
ablpnpcan.g φGAbel
ablpnpcan.x φXB
ablpnpcan.y φYB
ablpnpcan.z φZB
Assertion ablpnpcan φX+˙Y-˙X+˙Z=Y-˙Z

Proof

Step Hyp Ref Expression
1 ablsubadd.b B=BaseG
2 ablsubadd.p +˙=+G
3 ablsubadd.m -˙=-G
4 ablsubsub.g φGAbel
5 ablsubsub.x φXB
6 ablsubsub.y φYB
7 ablsubsub.z φZB
8 ablpnpcan.g φGAbel
9 ablpnpcan.x φXB
10 ablpnpcan.y φYB
11 ablpnpcan.z φZB
12 1 2 3 ablsub4 GAbelXBYBXBZBX+˙Y-˙X+˙Z=X-˙X+˙Y-˙Z
13 4 5 6 5 7 12 syl122anc φX+˙Y-˙X+˙Z=X-˙X+˙Y-˙Z
14 ablgrp GAbelGGrp
15 4 14 syl φGGrp
16 eqid 0G=0G
17 1 16 3 grpsubid GGrpXBX-˙X=0G
18 15 5 17 syl2anc φX-˙X=0G
19 18 oveq1d φX-˙X+˙Y-˙Z=0G+˙Y-˙Z
20 1 3 grpsubcl GGrpYBZBY-˙ZB
21 15 6 7 20 syl3anc φY-˙ZB
22 1 2 16 grplid GGrpY-˙ZB0G+˙Y-˙Z=Y-˙Z
23 15 21 22 syl2anc φ0G+˙Y-˙Z=Y-˙Z
24 13 19 23 3eqtrd φX+˙Y-˙X+˙Z=Y-˙Z