Description: Cancellation law for mixed addition and subtraction. ( pnpcan analog.) (Contributed by NM, 29-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ablsubadd.b | |
|
ablsubadd.p | |
||
ablsubadd.m | |
||
ablsubsub.g | |
||
ablsubsub.x | |
||
ablsubsub.y | |
||
ablsubsub.z | |
||
ablpnpcan.g | |
||
ablpnpcan.x | |
||
ablpnpcan.y | |
||
ablpnpcan.z | |
||
Assertion | ablpnpcan | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablsubadd.b | |
|
2 | ablsubadd.p | |
|
3 | ablsubadd.m | |
|
4 | ablsubsub.g | |
|
5 | ablsubsub.x | |
|
6 | ablsubsub.y | |
|
7 | ablsubsub.z | |
|
8 | ablpnpcan.g | |
|
9 | ablpnpcan.x | |
|
10 | ablpnpcan.y | |
|
11 | ablpnpcan.z | |
|
12 | 1 2 3 | ablsub4 | |
13 | 4 5 6 5 7 12 | syl122anc | |
14 | ablgrp | |
|
15 | 4 14 | syl | |
16 | eqid | |
|
17 | 1 16 3 | grpsubid | |
18 | 15 5 17 | syl2anc | |
19 | 18 | oveq1d | |
20 | 1 3 | grpsubcl | |
21 | 15 6 7 20 | syl3anc | |
22 | 1 2 16 | grplid | |
23 | 15 21 22 | syl2anc | |
24 | 13 19 23 | 3eqtrd | |