| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  | 
						
							| 2 | 1 | fveq2d |  | 
						
							| 3 |  | oveq2 |  | 
						
							| 4 | 2 3 | eqeq12d |  | 
						
							| 5 |  | oveq2 |  | 
						
							| 6 | 5 | fveq2d |  | 
						
							| 7 |  | oveq2 |  | 
						
							| 8 | 6 7 | eqeq12d |  | 
						
							| 9 |  | oveq2 |  | 
						
							| 10 | 9 | fveq2d |  | 
						
							| 11 |  | oveq2 |  | 
						
							| 12 | 10 11 | eqeq12d |  | 
						
							| 13 |  | oveq2 |  | 
						
							| 14 | 13 | fveq2d |  | 
						
							| 15 |  | oveq2 |  | 
						
							| 16 | 14 15 | eqeq12d |  | 
						
							| 17 |  | abs1 |  | 
						
							| 18 |  | exp0 |  | 
						
							| 19 | 18 | fveq2d |  | 
						
							| 20 |  | abscl |  | 
						
							| 21 | 20 | recnd |  | 
						
							| 22 | 21 | exp0d |  | 
						
							| 23 | 17 19 22 | 3eqtr4a |  | 
						
							| 24 |  | oveq1 |  | 
						
							| 25 | 24 | adantl |  | 
						
							| 26 |  | expp1 |  | 
						
							| 27 | 26 | fveq2d |  | 
						
							| 28 |  | expcl |  | 
						
							| 29 |  | simpl |  | 
						
							| 30 |  | absmul |  | 
						
							| 31 | 28 29 30 | syl2anc |  | 
						
							| 32 | 27 31 | eqtrd |  | 
						
							| 33 | 32 | adantr |  | 
						
							| 34 |  | expp1 |  | 
						
							| 35 | 21 34 | sylan |  | 
						
							| 36 | 35 | adantr |  | 
						
							| 37 | 25 33 36 | 3eqtr4d |  | 
						
							| 38 | 4 8 12 16 23 37 | nn0indd |  |