Metamath Proof Explorer


Theorem abslogle

Description: Bound on the magnitude of the complex logarithm function. (Contributed by Mario Carneiro, 3-Jul-2017)

Ref Expression
Assertion abslogle AA0logAlogA+π

Proof

Step Hyp Ref Expression
1 logcl AA0logA
2 1 abscld AA0logA
3 absrpcl AA0A+
4 relogcl A+logA
5 3 4 syl AA0logA
6 5 recnd AA0logA
7 6 abscld AA0logA
8 1 imcld AA0logA
9 8 recnd AA0logA
10 9 abscld AA0logA
11 7 10 readdcld AA0logA+logA
12 pire π
13 12 a1i AA0π
14 7 13 readdcld AA0logA+π
15 1 recld AA0logA
16 15 recnd AA0logA
17 ax-icn i
18 17 a1i AA0i
19 18 9 mulcld AA0ilogA
20 16 19 abstrid AA0logA+ilogAlogA+ilogA
21 1 replimd AA0logA=logA+ilogA
22 21 fveq2d AA0logA=logA+ilogA
23 relog AA0logA=logA
24 23 eqcomd AA0logA=logA
25 24 fveq2d AA0logA=logA
26 18 9 absmuld AA0ilogA=ilogA
27 absi i=1
28 27 oveq1i ilogA=1logA
29 10 recnd AA0logA
30 29 mullidd AA01logA=logA
31 28 30 eqtrid AA0ilogA=logA
32 26 31 eqtr2d AA0logA=ilogA
33 25 32 oveq12d AA0logA+logA=logA+ilogA
34 20 22 33 3brtr4d AA0logAlogA+logA
35 abslogimle AA0logAπ
36 10 13 7 35 leadd2dd AA0logA+logAlogA+π
37 2 11 14 34 36 letrd AA0logAlogA+π