Metamath Proof Explorer


Theorem abvmet

Description: An absolute value F generates a metric defined by d ( x , y ) = F ( x - y ) , analogously to cnmet . (In fact, the ring structure is not needed at all; the group properties abveq0 and abvtri , abvneg are sufficient.) (Contributed by Mario Carneiro, 9-Sep-2014) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses abvmet.x X=BaseR
abvmet.a A=AbsValR
abvmet.m -˙=-R
Assertion abvmet FAF-˙MetX

Proof

Step Hyp Ref Expression
1 abvmet.x X=BaseR
2 abvmet.a A=AbsValR
3 abvmet.m -˙=-R
4 eqid 0R=0R
5 2 abvrcl FARRing
6 ringgrp RRingRGrp
7 5 6 syl FARGrp
8 2 1 abvf FAF:X
9 2 1 4 abveq0 FAxXFx=0x=0R
10 2 1 3 abvsubtri FAxXyXFx-˙yFx+Fy
11 10 3expb FAxXyXFx-˙yFx+Fy
12 1 3 4 7 8 9 11 nrmmetd FAF-˙MetX