Description: An absolute value F generates a metric defined by d ( x , y ) = F ( x - y ) , analogously to cnmet . (In fact, the ring structure is not needed at all; the group properties abveq0 and abvtri , abvneg are sufficient.) (Contributed by Mario Carneiro, 9-Sep-2014) (Revised by Mario Carneiro, 2-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | abvmet.x | |
|
abvmet.a | |
||
abvmet.m | |
||
Assertion | abvmet | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abvmet.x | |
|
2 | abvmet.a | |
|
3 | abvmet.m | |
|
4 | eqid | |
|
5 | 2 | abvrcl | |
6 | ringgrp | |
|
7 | 5 6 | syl | |
8 | 2 1 | abvf | |
9 | 2 1 4 | abveq0 | |
10 | 2 1 3 | abvsubtri | |
11 | 10 | 3expb | |
12 | 1 3 4 7 8 9 11 | nrmmetd | |