Metamath Proof Explorer


Theorem abvtri

Description: An absolute value satisfies the triangle inequality. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abvf.a A=AbsValR
abvf.b B=BaseR
abvtri.p +˙=+R
Assertion abvtri FAXBYBFX+˙YFX+FY

Proof

Step Hyp Ref Expression
1 abvf.a A=AbsValR
2 abvf.b B=BaseR
3 abvtri.p +˙=+R
4 1 abvrcl FARRing
5 eqid R=R
6 eqid 0R=0R
7 1 2 3 5 6 isabv RRingFAF:B0+∞xBFx=0x=0RyBFxRy=FxFyFx+˙yFx+Fy
8 4 7 syl FAFAF:B0+∞xBFx=0x=0RyBFxRy=FxFyFx+˙yFx+Fy
9 8 ibi FAF:B0+∞xBFx=0x=0RyBFxRy=FxFyFx+˙yFx+Fy
10 simpr FxRy=FxFyFx+˙yFx+FyFx+˙yFx+Fy
11 10 ralimi yBFxRy=FxFyFx+˙yFx+FyyBFx+˙yFx+Fy
12 11 adantl Fx=0x=0RyBFxRy=FxFyFx+˙yFx+FyyBFx+˙yFx+Fy
13 12 ralimi xBFx=0x=0RyBFxRy=FxFyFx+˙yFx+FyxByBFx+˙yFx+Fy
14 9 13 simpl2im FAxByBFx+˙yFx+Fy
15 fvoveq1 x=XFx+˙y=FX+˙y
16 fveq2 x=XFx=FX
17 16 oveq1d x=XFx+Fy=FX+Fy
18 15 17 breq12d x=XFx+˙yFx+FyFX+˙yFX+Fy
19 oveq2 y=YX+˙y=X+˙Y
20 19 fveq2d y=YFX+˙y=FX+˙Y
21 fveq2 y=YFy=FY
22 21 oveq2d y=YFX+Fy=FX+FY
23 20 22 breq12d y=YFX+˙yFX+FyFX+˙YFX+FY
24 18 23 rspc2v XBYBxByBFx+˙yFx+FyFX+˙YFX+FY
25 14 24 syl5com FAXBYBFX+˙YFX+FY
26 25 3impib FAXBYBFX+˙YFX+FY