Description: Equivalence of two versions of the Axiom of Choice ax-ac . The proof uses neither AC nor the Axiom of Regularity. The right-hand side expresses our AC with the fewest number of different variables. (Contributed by NM, 5-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | aceq1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd | |
|
2 | 1 | cbvralvw | |
3 | elequ1 | |
|
4 | 3 | anbi2d | |
5 | 4 | rexbidv | |
6 | 5 | cbvreuvw | |
7 | 6 | ralbii | |
8 | 2 7 | bitri | |
9 | 8 | ralbii | |
10 | elequ1 | |
|
11 | 10 | anbi1d | |
12 | 11 | rexbidv | |
13 | 12 | reueqd | |
14 | 13 | raleqbi1dv | |
15 | 14 | cbvralvw | |
16 | elequ1 | |
|
17 | 16 | anbi1d | |
18 | 17 | rexbidv | |
19 | 18 | reueqd | |
20 | 19 | raleqbi1dv | |
21 | 20 | cbvralvw | |
22 | 9 15 21 | 3bitr4i | |
23 | 22 | exbii | |
24 | 19.21v | |
|
25 | impexp | |
|
26 | bi2.04 | |
|
27 | 25 26 | bitri | |
28 | 27 | albii | |
29 | eu6 | |
|
30 | df-reu | |
|
31 | 19.42v | |
|
32 | an42 | |
|
33 | anass | |
|
34 | 32 33 | bitr3i | |
35 | 34 | exbii | |
36 | df-rex | |
|
37 | elequ1 | |
|
38 | elequ2 | |
|
39 | elequ2 | |
|
40 | 38 39 | anbi12d | |
41 | 37 40 | anbi12d | |
42 | 41 | cbvexvw | |
43 | 36 42 | bitri | |
44 | 43 | anbi2i | |
45 | 31 35 44 | 3bitr4i | |
46 | 45 | bibi1i | |
47 | 46 | albii | |
48 | 47 | exbii | |
49 | 29 30 48 | 3bitr4i | |
50 | 49 | imbi2i | |
51 | 50 | albii | |
52 | df-ral | |
|
53 | nfv | |
|
54 | nfv | |
|
55 | nfa1 | |
|
56 | 55 | nfex | |
57 | 54 56 | nfim | |
58 | elequ1 | |
|
59 | 58 | imbi1d | |
60 | 53 57 59 | cbvalv1 | |
61 | 51 52 60 | 3bitr4i | |
62 | 61 | imbi2i | |
63 | 24 28 62 | 3bitr4i | |
64 | 63 | albii | |
65 | alcom | |
|
66 | df-ral | |
|
67 | 64 65 66 | 3bitr4ri | |
68 | 67 | exbii | |
69 | 23 68 | bitri | |