Metamath Proof Explorer


Theorem ackval1

Description: The Ackermann function at 1. (Contributed by AV, 4-May-2024)

Ref Expression
Assertion ackval1 Could not format assertion : No typesetting found for |- ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 1e0p1 1=0+1
2 1 fveq2i Could not format ( Ack ` 1 ) = ( Ack ` ( 0 + 1 ) ) : No typesetting found for |- ( Ack ` 1 ) = ( Ack ` ( 0 + 1 ) ) with typecode |-
3 0nn0 00
4 ackvalsuc1mpt Could not format ( 0 e. NN0 -> ( Ack ` ( 0 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) ` 1 ) ) ) : No typesetting found for |- ( 0 e. NN0 -> ( Ack ` ( 0 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) ` 1 ) ) ) with typecode |-
5 3 4 ax-mp Could not format ( Ack ` ( 0 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) ` 1 ) ) : No typesetting found for |- ( Ack ` ( 0 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) ` 1 ) ) with typecode |-
6 peano2nn0 n0n+10
7 1nn0 10
8 ackval0 Could not format ( Ack ` 0 ) = ( i e. NN0 |-> ( i + 1 ) ) : No typesetting found for |- ( Ack ` 0 ) = ( i e. NN0 |-> ( i + 1 ) ) with typecode |-
9 8 itcovalpc Could not format ( ( ( n + 1 ) e. NN0 /\ 1 e. NN0 ) -> ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( i + ( 1 x. ( n + 1 ) ) ) ) ) : No typesetting found for |- ( ( ( n + 1 ) e. NN0 /\ 1 e. NN0 ) -> ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( i + ( 1 x. ( n + 1 ) ) ) ) ) with typecode |-
10 6 7 9 sylancl Could not format ( n e. NN0 -> ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( i + ( 1 x. ( n + 1 ) ) ) ) ) : No typesetting found for |- ( n e. NN0 -> ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( i + ( 1 x. ( n + 1 ) ) ) ) ) with typecode |-
11 nn0cn n+10n+1
12 6 11 syl n0n+1
13 12 mullidd n01n+1=n+1
14 13 oveq2d n0i+1n+1=i+n+1
15 14 mpteq2dv n0i0i+1n+1=i0i+n+1
16 10 15 eqtrd Could not format ( n e. NN0 -> ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( i + ( n + 1 ) ) ) ) : No typesetting found for |- ( n e. NN0 -> ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( i + ( n + 1 ) ) ) ) with typecode |-
17 16 fveq1d Could not format ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( i e. NN0 |-> ( i + ( n + 1 ) ) ) ` 1 ) ) : No typesetting found for |- ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( i e. NN0 |-> ( i + ( n + 1 ) ) ) ` 1 ) ) with typecode |-
18 eqidd n0i0i+n+1=i0i+n+1
19 oveq1 i=1i+n+1=1+n+1
20 19 adantl n0i=1i+n+1=1+n+1
21 7 a1i n010
22 ovexd n01+n+1V
23 18 20 21 22 fvmptd n0i0i+n+11=1+n+1
24 1cnd n01
25 nn0cn n0n
26 peano2cn nn+1
27 25 26 syl n0n+1
28 24 27 addcomd n01+n+1=n+1+1
29 25 24 24 addassd n0n+1+1=n+1+1
30 1p1e2 1+1=2
31 30 oveq2i n+1+1=n+2
32 31 a1i n0n+1+1=n+2
33 28 29 32 3eqtrd n01+n+1=n+2
34 17 23 33 3eqtrd Could not format ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) ` 1 ) = ( n + 2 ) ) : No typesetting found for |- ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) ` 1 ) = ( n + 2 ) ) with typecode |-
35 34 mpteq2ia Could not format ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( n + 2 ) ) : No typesetting found for |- ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( n + 2 ) ) with typecode |-
36 2 5 35 3eqtri Could not format ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) : No typesetting found for |- ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) with typecode |-