Metamath Proof Explorer


Theorem acongsym

Description: Symmetry of alternating congruence. (Contributed by Stefan O'Rear, 2-Oct-2014)

Ref Expression
Assertion acongsym ABCABCABCACBACB

Proof

Step Hyp Ref Expression
1 congsym ABCABCACB
2 1 exp32 ABCABCACB
3 2 3impia ABCABCACB
4 zcn BB
5 4 3ad2ant2 ABCB
6 5 negnegd ABCB=B
7 6 oveq1d ABC-B-C=BC
8 4 negcld BB
9 8 3ad2ant2 ABCB
10 zcn CC
11 10 3ad2ant3 ABCC
12 9 11 neg2subd ABC-B-C=CB
13 7 12 eqtr3d ABCBC=CB
14 13 breq2d ABCABCACB
15 14 biimpd ABCABCACB
16 3 15 orim12d ABCABCABCACBACB
17 16 imp ABCABCABCACBACB